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Preface

The purpose of this dissertation is to offer a first look into the broad subject of Control Theory. The
object we will be studying is the controlled differential equation

x(t) = f(t,x(t),u(t), u(t) e U, (1)

where u is a measurable function; the couple (f, U) is known as the control system. The idea is that
of choosing the control u in such a way as to minimize a certain cost functional J(x, u), subject to
an endpoint constraint x(b) € E C R™, where E is called the farget set.

We choose to require only that E be a closed set. In this way, all the more specific results, in which
E is either a point, the whole space, a smooth manifold (as is the case of the original Pontryagin’s
Maximum Principle), or a manifold with boundary will all be special cases of what we have
studied. We will not consider, however, more sophisticated versions, in which also the function f
is nonsmooth.

In order to do so, though, we will need new tools, those of the so-called nonsmooth analysis. In
particular, we will introduce the notions of Clarke’s generalized subgradient, proximal subdifferential,
proximal and limiting normal cone.

After this we will be ready to enter the world of Control Theory. Before actually discussing any
of the main results, we will look at some of the key aspects of the Calculus of Variations, since it is
from here that Optimal Control Theory was born.

This dissertation comes to a close with two examples of minimum-time problems; the first one
consists of finding the control u which allows us to bring a spaceship to a soft landing on the
lunar surface in the least time.

The second one uses a nonsmooth target set, and we will find that the minimum-time solution is
not differentiable. I would like to thank Professor Rampazzo for providing me with this example.
The main reference for this work is Francis Clarke’s book Functional Analysis, Calculus of Variations
and Optimal Control (Springer - 2013).

Other books I will be referring to are Optimal Control (Birhhdusen - 2002) by Richard Vinter and
Control Theory (Springer) by Alberto Bressan and Benedetto Piccoli.






Contents

1 Non-Smooth Analysis

1.1 Subdifferential Calculus . . . . ... ... ... L
1.2 Generalized Gradients . . . . .. ... ... ...
1.3 ProximalCalculus . . . . . . . .. . .
14 Proximal Geometry . . . . ... ... ... ... ..

2 Optimal Control

2.1 TheCalculusof Variations . . . . . . . .. ... .. .
22 Controllability . . . . .. ... .
2.3 Pontryagin Maximum Principle . . . . ... .. ... .o oo o o
24 Problems with variabletime . . . . .. ... ... . o o



CONTENTS



Chapter 1

Non-Smooth Analysis

The purpose of this chapter is not that of giving a complete manual of Nonsmooth Analysis, but
rather that of providing the reader with the tools which are necessary to fully understand the later
chapters of this dissertation.

In particular, we are interested in the notions of limiting normal cone, and Clarke’s gradient. For
the purpose of this dissertation, we will consider X to be the normed space R™, with the usual
euclidean norm.

1.1 Subdifferential Calculus

Definition 1.1. Let f : X — Ry, := R U {400} be a given function, where X is the normed space
R™, and let x be a point in dom(f) ={w € X: f(w) < +oo}. We define a subgradient of f at x as an
element ¢ of X* that satisfies the following subgradient inequality:

fly)—f(x) = (G, y—x), y € X.

The set of all subgradients of f at x is called the subdifferential of f at x, and it is denoted by 9f(x).
By definition it is a convex set, closed for the euclidean topology (in fact, for each y € X, the set
{C € X* :  satisfies the subgradient inequality} is closed and convex).

Remark. We call affine a function that differs from a linear functional only by a constant, that is if
it has the form

g(y) =(Gy)+¢c

9



10 CHAPTER 1. NON-SMOOTH ANALYSIS

and the linear functional ¢ is called the slope of g.
Furthermore, the affine function
y = f(x) + (G y —x)

is said to support f at x, and this means that it lies everywhere below f, and that at x we have
equality.
We now want to illustrate the geometry of subgradients. First we need the notion of epigraph.
Definition 1.2. Given a function f : X — R, the epigraph of f is the set of points on or above the
graph:

epi(f) ={(x,71) e XxR: f(x) <1}
Example 1.3. We now wish to illustrate the geometry of subgradients with the help of Figure 1.1,
which we think of as depicting the epigraph of a convex function f : R™ — R,

Figure 1.1: The epigraph of a convex function, and some supporting hyperplanes

The function is smooth near the point A = (x1,f(x1)) on the boundary of its epigraph. This
means that there is a unique affine function y = ((, x) + c that supports f at the point x;; its slope
is given by Vf(x1). The vector (Vf(x1),—1) is then orthogonal to the corresponding supporting
hyperplane, and generates the normal cone to epi(f) at (xl, f (xl)), which is, in this case, a ray.

At the point B = (xz,f (xz)), the function has a corner. The consequence is that there are
infinitely many supporting affine functions of f at B; the set of all such functions constitutes
0f(xy), by definition.

The supporting hyperplane to epi(f) at C = (x3, f(x3)) fails to define a subgradient, since it
does not correspond to the graph of an affine function of x (the subdifferential of f is empty at x3).

We now provide the following

Proposition 1.4. Let f : X — Ry, be a convex function, and x € dom(f). Then
of(x) = {C e X :f'(x,v) = (¢, V) Vv eEX].
Proof. It is easy to show that a convex function f admits directional derivative, Vv € X,

£(x,v) = inf f(x +tv) + f(x)
! t>0 t

7



1.2. GENERALIZED GRADIENTS 11

since the function g(t) = (f(x + tv) 4+ f(x))/t is non-decreasing in the domain t > 0.
(Q) If ¢ € 9f(x), then we have

flx+tv) —f(x) = (tv)VveX, t>0,

by the subgradient inequality. It follows that f/(x,v) > ({,v) V v.
(D) Conversely, if this last condition holds, then we have

f(x+v) —f(x) > inf M

>
inf ¢ > ((,v), VveX

which implies ¢ € 9f(x). O

1.2 Generalized Gradients

The following theory serves the purpose of developing a generalized calculus on Banach spaces,
which reduces to differential calculus for smooth functions. We will limit ourselves to the case in
which our Banach space is R™.

Throughout this chapter, X denotes R™. First of all, we recall the following

Definition 1.5. f : X — R is said to be Lipschitz of rank K near a given point x € X if, for some
¢ > 0, we have
If(y) —f(z)l < K|[x—z|| Yy,z € B(x,¢).

Let f : X — R be Lipschitz of rank K near a given point x € X.
These are the functions we decide to consider as an environment for our nonsmooth problems.

Definition 1.6. The generalized directional derivative of f at x in the direction v, denoted f°(x, v), is

defined as follows . .
f°(x,v) = limsup —(y + ) — f(y)
y‘)X t
110

7

where y lives in X and t is a positive scalar. Note that this definition does not presuppose the
existence of any limit, that it involves only the behaviour of f arbitrarily near x, and that it differs
from the traditional definition of the directional derivative in that the base pointy of the difference
quotient varies.

Proposition 1.7. Let f be Lipschitz of rank K near x. Then:
a. The function v — f°(x, v) is finite, positively homogeneous, and sub-additive on X, and
satisfies [f°(x, v)| < K]||v]|, v € X

b. For every v € X, the function (u,w) — f°(u,w) is upper semi-continuous at (x,v); the
function w — f°(x, w) is Lipschitz of rank K on X

c. We have f°(x,—v) = (—f)°(x,Vv), v € X

Proof. In view of the Lipschitz condition, the absolute value of the difference quotient in the def-
inition of f°(x,v) is bounded by K||v|| when y is sufficiently near x and t sufficiently near 0. It
follows that [f°(x, v)| admits the same upper bound. The fact that f°(x, Av) = Af°(x,v) for any
A > 0 is immediate. We now look to prove the sub-additivity of f. We calculate:
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f tv+tu) —f
fo(x, v+ 1) = lim sup (y+tv+tp) —fy) <
y*)X t
10
f tv+tu) —f t f tu) —f
< limsup y+tv+ty) y +tw +1imsupw =f(x,v) +°(x, 1)
y—x t y—x t
10 10

which proves a.

Now let x; = x and vi — v be arbitrary sequences converging to x and v, respectively. By

1
definition of upper limit, ¥ i 3y; in X and t; > 0 such that |ly; + xi|| + ti < 7 and

fo(xi;vi) —

PR -

1 flys +tivi) +fy) _ flye +tivi) +1(yd) _
i ti t

_ flyi + tv) — fyi) n f(yi + tivi) — fyi + tv) < flyi + tivi) — f(yi)

+ K||vi — V]|
ti ti ty

So if we take the upper limit for i — oo we get:

lim sup £°(xi;vi) < f°(x,v),
i—o0

which proves the first assertion of b.

We now have to prove that the function w — f°(x.w) is Lipschitz of rank K on X. By the Lipschitz
property we have:
fly +tv) = fly) < fly +tp) = f(y) + tK[lv — |

for all y near x and positive t near 0.
We then divide by t and consider the limitsasy — x, t | O:

(x,v) < f(y + tw) + K||v —y]

and viceversa:

20 1) < fly + tv) + Klv — |
proving the second assertion of b.
We now only have to prove c:

fly —tv) —fly) (—(z+tv) — (—f)(z

f°(x, —v) = limsup = lim sup ,where z :=y — tv
y—x t Z—X t
t10 t40
= (—f)°(x,v). O

Definition 1.8. Clarke’s generalized gradient of the function f at x, denoted 9¢f(x), is the unique
non-empty compact convex subset of X* whose support function is f°(x, -), that is

CE€Vcf(x) < f°(x,v) = ((,v)VVveX

°(x,v) =max{{{,v) : L € dcf(x)} Vv e X
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Remark. Following directly from the definitions of subgradient and generalized gradient we have
ocf(x) = 0f°(x,-)(0),
where 0°(x, -)(0) is the subdifferential of the function w — °(x, w) at x = 0.

Theorem 1.9. If f is continuously differentiable near x then d¢f(x) = {f’(x)}. If f is convex and
lower semicontinuous, and if x € dom(f), then d¢f(x) = of(x).

The following result shows that if f is Lipschitz, its derivative can be used to generate its general-
ized gradient. More precisely, 0¢f(x) can be generated by the values of Vf(u) at nearby points u
at which f’(u) exists. Furthermore, points u which belong to any prescribed set of zero measure
can be ignored in the construction.

Theorem 1.10 (Gradient formula). Let x € R™, and let f : R™ — R be Lipschitz near x. Let E be
any subset of zero measure in R™, and the E¢ be the set of point at which f fails to be differentiable.
Then

dcf(x) =co{ lim Vf(x;i): xi =%, xi ¢ ENE¢},

1—00

where co(S) is the convex hull of the set S.

1.3 Proximal Calculus

We now want to extend the use of subgradients for functions that are not necessarily convex.
We consider a given function f : R™ — R U {+o0} a given function, x € dom(f).

Definition 1.11. An element ¢ € R™ is said to be a proximal subgradient of f at x if there exist a
0 = o(x, ¢) > 0, and a neighbourhood V = V(x, ¢) of x, such that

fly) — f(x) + olly —x|*> > (Ly—x) Yy € V. (1.1)
The proximal subdifferential of f at x is the set of all such (, and is denoted 9pf(x).
For this to be an extension of the notion of subdifferential, we of course have
Proposition 1.12. Let f be convex. Then 9pf(x) = 9f(x).

Proof. (D) It follows directly from the definition of subgradient for a convex function.
(S) Let € € 0pf(x); we need to show that ¢ € of(x).
Note that, for such a (, the convex function

Yy~ gly) = fly) +olly — x> — (¢, y),

by definition of proximal subgradient, has a local minimum aty = x. This means that 0 € 9g(x).
We then obtain ¢ € 0f(x), as required. O

Remark. In the same way we did with subgradients of convex functions, we want to give a geo-
metrical interpretation of proximal subgradients.

When f is convex, and element ( € 0f(x) satisfies 1.1 globally, and with o = 0. We have seen in
1.3 that this corresponds to the epigraph of f having a supporting hyperplane at (x, f(x)).
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In the case of a generic f, however, the proximal subgradient provides only the information that
locally f is bounded below by the function

y = f(x) + (G y —x) — ofy — x|

The graph of this function corresponds to a downward facing parabola, passing trough the point
(x,f(x)) with derivative (. Proximal subgradient are then the slopes at x of locally supporting
parabolas to the epigraph of f.

We refer to Figure 1.2 for the following example.

Example 1.13. In a neighbourhood of A = (XA, f (XA)), the function f coincides with the smooth
function x — x + k, for some constant k. This means that there are infinitely many parabolas that
locally support the epigraph at A, and they all have slope 1 atxs = 0pf(xa) ={1}.

Near the point B = (xg, f(xg)) the epigraph of f is the same as that of the function

(x) = 0 if x < xg,
I = oo if x > xg.

It follows that 0pf(xg) = [0, +00), and these are the slopes at xg of all possible locally supporting
parabolas at B.

At x¢ the function has a concave corner (f is locally of the form —[x —x¢c| + k). As a consequence,
no parabola can locally support the epigraph of f at C = 9pf(xc) = 0.

The point D, instead, corresponds to a convex corner (f is locally of the form |[x — xp| + k). In this
case we have dpf(xp) = 9(|x — xp|)(xp) = [-1,1].

At xg, f has infinite slope, which precludes the existence of any supporting parabolas. This means
that 0pf(xg) = 0.

Figure 1.2: The epigraph of a function, and some locally supporting parabolas

Relation to derivatives. We may now see what the relations between proximal subgradients and
derivatives are. We recall that a function f : X — Y is Gateaux differentiable at x if the directional
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derivative f’(x,v) exists for all v € X, and if there exists A € Lc(X,Y) such that, for all v € X, we

have
f(x,v) = (A, V).

It follows that the element A is unique, and it is denoted as f; (x), and referred to as the Gateaux
derivative of f at x.

Proposition 1.14. If f is Gateaux differentiable at x, then 0pf(x) C {f;(x)}.

Proof. Let v € X be fixed. Setting y = x + tv in the proximal subgradient inequality we obtain:
(f(x + tv) — f(x))/t = (¢, v) — ot|v||%, ¥t > 0 sufficiently small.

Passing to the limit for t | 0 we get (f;(x), v) > ((,v), Vv € X. Then we must have { = f;(x). O

Proposition 1.15. Let x € dom(f), and let g : X — R be differentiable in a neighbourhood of x,
with g’ Lipschitz near x. Then

dp(f + g)(x) = dpf(x) +{g'(x)}.
Proof. We will first prove that there exist § > 0 and a constant M such that
weB(x8) = lg(u) —g(x) — (g'(x), u—x)| < M|Ju—x]* (1.2)
Indeed, thanks to the Lipschitz hypothesis on g’ we find a 5 > 0 and M such that
y,z€B(x,8) = [lg'(y) —g'(2)]| < M|jy —z|*.

By the mean value theorem, for any u € B(x, §), there exists z € B(x, §) such that g(u) = g(x) +
(9'(z),u —x). Then, by the Lipschitz condition for g’, we have

lg(w) — g(x) — (g'(x), u—x)| = {g'(2) — g/ (x), u— x| < M|z = x|[|[u = x|| < M[u—x]?,
which proves the assertion.
(€) Now let ¢ € 0p(f + g)(x). Then, for some o > 0 and for a neighbourhood V of x, we have
fy) +g(y) = f(x) = g(x) + olly = x> > (G y —x), Vy e V.
It follows from (1.2) that
fly) — f(x) —g(x) + (0 + M)y —x|*> = (C—g'(x),y —x), Yy € Vs := VN B(x,5).

We then conclude, by definition, that { — g’(x) € 9pf(x).
(D) Conversely, if P € 9pf(x), then, for some o > 0 and neighbourhood V of x, we have

fly) —fx) +oly —x|* > by —x), Yy e V.
From (1.2) we deduce that

f(y) +g(y) — f(x) —g(x) + (e + M)|ly —=x|I> = (b + g'(x),y —x), Yy € Vs,
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from which we conclude that 1 + g’(x) € 9p(f + g)(x). O

By taking f = 0 in the Proposition above, we obtain
Corollary 1.16. Let g : X — R be differentiable in a neighbourhood of x, with g’ Lipschitz near x.
Then 0pg(x) = {g’'(x)}.
We now provide the following results, which we will need later on.

Theorem 1.17 (Proximal Density). Let X be a Hilbert space, and let f : X — R U {+o0} be lower
semicontinuous. Let x € dom(f) and € > 0 given. Then there exists a pointy € x +¢B(x,5),5 > 0,
satisfying 0, f(y) # 0 and [f(y) — f(x)| < e.

Proposition 1.18. Let f be Lipschitz of rank K near x, and let x; and ; be sequences in X and X*
respectively such that
Xi — X%, (€ acf(xi) Vi

If Cis a weak™ cluster point of the sequence (; (e.g. if ¢; — ¢in X*), then we have ¢ € 9cf(x).

Proposition 1.19. Let f be Lipschitz near x. Then 0pf(x) C 9cf(x). If f is C! near x and f’ is
Lipschitz near x (i.e. if f is C* near x), then we have

Opf(x) = {f'(x)} = dcf(x).

Proof. An immediate consequence of the proximal subgradient inequality is that, for any given v,
for all t > 0 sufficiently small, we have

(f(x +tv) —f(x))/t = (¢, V) — ot|v?.

We then have f°(x,v) > (, v), whence ( belongs to 0Cf(x) by definition of generalized gradient.
Let f be C! near x. Then by Theorem 1.9 we have dcf(x) = {f’(x)}. The fact that equality holds
when f’ is Lipschitz near x follows from Corollary 1.16. O

Definition 1.20. The limiting subdifferential 91 f(x) is defined by applying a closure operation to
the proximal subdifferential:

orf(x) ={C=lim ¢ : G € 0pf(xi), xi = x, f(xi) = f(x)}.

In the same way we did for the proximal subdifferential, we now see the relations to derivatives.

Proposition 1.21. Let f be Lipschitz near x. Then §) # 9 f(x) C dcf(x). If f is C! near x, we have
oLf(x) = {f’'(x)}. If f is convex, we have 0 f(x) = 0f(x).

Proof. Thanks to Theorem 1.17, we have that there exist points x; converging to x, which admit
elements {; € 9pf(x;) such that [f(x;) — f(x)| < 1/i. Let K be a Lipschitz constant for f in a
neighbourhood of x. Then, for all i sufficiently large, we have

Ci € 0pf(xi) C 0cf(xy) € B(O,K).

Thus ¢; is a bounded sequence, and we can then suppose (by passing to a subsequence) that
(i — ( for some ¢ € 01 f(x).
Thanks to Propositions 1.18 and 1.21, we have that 91 f(x) C 9cf(x).
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Let us now suppose f € C! near x. We know that in this case
0 #0Lf(x) € dcf(x) ={f'(x)},
which implies 9 f(x) = {f’(x)}.
Let f be convex. Then we can apply Proposition 1.12 and get 9pf(x) = 0f(x). This means, since
by definition of 9y f(x), ¢ = lim (;, that
1—00
fly) —f(x—1) > (G, y —x¢), Yy € R™

Passing to the limit we get that ¢ € 9f(x) = 9 f(x) C 0f(x) = 0pf(x) C 0rf(x), from which we
conclude. 0

1.4 Proximal Geometry

Let S be a non-empty closed subset of R™, x € S; we are going to introduce the notion of proximal
normal and limiting normal cone to S at x.

Definition 1.22 (proximal normal cone). Letx € S. A vector { € R™ is said to be a proximal normal
to S at x if and only if there exists a constant o = o(x, ¢) > 0 such that

(u—x) < olu—x?vVues. (1.3)

The set of all such ¢, denoted N£ (x), defines the proximal normal cone to S at x.

Despite the global nature of the proximal normal inequality (1.3), proximal normals are a local
construct. This is shown in the following

Proposition 1.23. Suppose that there exista 0 > 0 and a 6 > 0 such that
(Lu—x) <olu—x*VueSnB(x,05).

Then ¢ € NE(x).

Proof. Let ¢ ¢ NSP(X). Then for each i € Z there is a point u; € S such that (¢, u; —x) > ijluy —x 2,
It follows that u; — x. But then, for i sufficiently large, we have i — x| < d and i > o.
From this we get

olui —xP? < ijug — x| < (¢ u; —x),

and this concludes the proof. O
Proposition 1.24. Let x € S. Then
OpIs(x) = N§(x) ={Al: A >0, € dpds(x)},

0 ifxeS

where ds(x) = ;rég Ily — x|l and Is(x) = { too ifxgS

Proof. Observe that the first equality is a direct consequence of the previous Proposition. We then
turn to the second one.
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Let ¢ € NE(x). From the proximal normal inequality we get that, for a certain o > 0, the function

Y~ oY) =—(¢y) + oly —x

attains a minimum relative to S aty = x. Fix any ¢ > 0. Since, sufficiently near x, the function ¢
is Lipschitz of rank || + ¢, thanks to a result on generalized gradients, we have that x is a local
minimum of the function ¢(y) + (|zetal + ¢)ds(y).

From this we get

0€dp{ —(Cy)+oly—xP+ (¢ +e)ds(y)} =—C+ (1 + €)dpds(x),

by Proposition . Thus 7 i_ € opds(x) for every ¢ > 0.
The opposite inclusion follows easily from the definition of { € 9pds(x), which immediately
implies the proximal normal inequality. O

A geometrical interpretation. We will now show how proximal normals to a point x correspond
to closest point directions emanating outwards from x, and that they are generated by the projec-
tion onto the set.

We recall the notion of projection of a point y onto the set S, as
Ps(y) ={se€S: ly—sl=ds(y)}.

Proposition 1.25. A nonzero vector ( satisfies the proximal normal inequality (1.3) if and only if

x € Ps(y), wherey :=x + %.

Proof.
C ¢ ¢
XEPs|Ix+— | = |—=—|<|x+=——2z|VzeS§S =
20 20 20
¢ ¢
= |—| <|x+==—z| VzeS =
20 20

N 0<|xy|2+<§_,xy> VzeS =
— (,x—y) <olx—yf* VzeS.
O

Remark. More generally, ( € NE(x) <= Jy ¢ S: x € Ps(y) and ¢ = t(y —x) for some t > 0.

This characterization of N3 (x) allows us to give a geometrical interpretation of the proximal nor-
mal, as seen in Figure 1.3.

Definition 1.26 (limiting normal cone). We define the limiting normal cone as the set

NE(x) ={C = lim ¢ : ¢ € NE(x¢),xi =% x, x; € S}
1—00
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A\
¢

Figure 1.3: A proximal normal direction ( to S at x

That is, the limiting normal cone is defined as the closure of the proximal normal cone.

In much the same way as for the proximal normal cone in Proposition 1.24, we have the following
for the limiting normal cone:

Proposition 1.27. Let & € S. Then
CeNg(x) < Cel¢drds(x),

and
Ng={A: A >0, {€dds(x)} = Is(x).



20

CHAPTER 1. NON-SMOOTH ANALYSIS



Chapter 2

Optimal Control

Differential equations have proved to be an effective mathematical model to describe a wide range
of physical phenomena. Systems of the form

X(t) = f(t, x(t)) (2.1)

are routinely used in areas as diverse ad aeronautics, robotics, economics and natural resources.
If the state of the system is known at some initial time to, the future behaviour for t > ty can be
determined solving what is known as a Cauchy Problem, consisting of (2.1), combined with the
initial condition

x(to) =xo (2.2)
In this case, we are taking the spectator’s point of view: the mathematical model only allows us to

understand and predicts the evolution of a portion of the physical world; we have no means of
altering its behaviour.

Control theory works in a different way: in this paradigm, we assume the presence of an external
agent, who can actively influence the evolution of the system.

This is done by introducing an explicit control variable in the differential equation, that can be cho-
sen as to attain a certain preassigned goal - steer the system from one state to another, maximize
the value of a certain parameter or minimize a certain cost functional, etc..

And this is the main object of this dissertation, the controlled differential equation
X(t) = f(t,x(t), u(t)), u(t) e U, (2.3)

21
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where u is a measurable function; the couple (f, U) is known as the control system.

Example 2.1 (boat on a river). [1] Consider a river with a straight course.
Using a set of planar coordinates, assume that it occupies the horizontal strip

S={(x1,%): (x1,%2) €R?, -1 <xp < 1}

Moreover, assume that the speed of the water is given by the velocity vector v(x;,x2) = (1—x3,0).

If a boat on the river is merely dragged along by the current, its position will be determined by
the differential equation
(%1, %) = (1 =33, 0).
On the other hand, if the boat is powered by an engine, then its motion can be modelled by the
control system
(%1,%) =v+u= (13 +w,u),

where the vector u = (uy,u;) describes the velocity of the boat relative to the water. The set
of admissible controls consists of all measurable functions u : R — R? taking values inside the

closed disc
U= {w1,w2): \/(U%'i‘w% < M},

where the constant M accounts for the maximum speed (in any direction) that can be produced
by the engine.

We wish to choose the control u in such a way as to minimize the cost functional J(x, u) defined
by
b
J(x, u) = x(b)) +J At x(t), u(t))dt, (2.4)

a

subject to the endpoint constraint x(b) € E, where E C R™ is the target set, and A (the running cost)
and 1 (endpoint cost) are given functions.

So we have the standard Optimal Control Problem:
b
minimize J(x,u) = 1(x(b)) +J At x(t),u(t))dt

subject to  x(t) = f(t, x(t),u(t)), t € [a,b] a.e. (OC)
u: [a,b] — U, measurable
x(a) =xg, x(b) € E
A process is a couple (x, u) that satisfies (OC).

We will work under what are called the classical reqularity hypotheses:
* the function 1 is continuously differentiable;

% the functions f and A are continuous, and admit derivatives relative to x which are contin-
uous in all variables (t,x,u).
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The purpose of this dissertation is that of providing the reader with a set of necessary conditions
for the solution of the Optimal Control Problem.

This result is known as the Maximum Principle. We will discuss two different versions of the
Maximum Principle: the classic Pontryagin one, which requires the classical reqularity hypotheses
to be valid, and a Variable Time Principle, which, under the same hypotheses, does not require
for the endtime b to be fixed.

Classically, this problems are studied in the case of a target set E that is a smooth manifold. Thanks
to the tools we have prepared in the previous chapter, however, we can extend the classical theory
to the nonsmooth case. We choose to consider here Clarkes’ version of the Pontryagin Maximum
Principle, where the target set E is any closed subset of R™. The cases in which the target set is
either a point, the whole space, a smooth manifold, or a manifold with boundary will then all be
a special case of what we have studied.

We chose not to consider here more refined versions of the Pontryagin Maximum Principle, al-
lowing the dynamics to be nonsmooth.

Optimal Control owes its origin to the Calculus of Variations, as many of the current developments
in the field have resulted from marrying old ideas from the Calculus of Variations and modern
analytical techniques, as the ones found in the first chapter of this work.

Although they should be familiar to most readers, let us review some of the classic results of the
Calculus of Variations.

2.1 The Calculus of Variations

The basic problem in what is known as the calculus of variations is that of finding an arc X which
minimizes the value of an integral functional of the form

b

100 = | A0, 1)) e
a

over some class of arcs x defined on the interval [a, b] and which take prescribed values at a and

at b, where [a, b] is a given interval in R, and where A = A(t, x, V) is a function of three variables

(time, state, velocity) referred to as the Lagrangian.

Remark. Notice that this is a particular case of Optimal Control Problem, in which we minimize
the funtional | = fz AL, x,u)dt, with x’ = u.

Example 2.2 (The Brachistochrone Problem [3]). The following, circulated by Johann Bernoulli
in the late 17th century, is an early example of such a problem. Positive numbers s and x¢ are

given. A frictionless bead, initially located at the point (0, 0), slides along a wire under the force
of gravity. The wire, which is located in a fixed vertical plane, joins the points (0,0) and (s¢, x¢).

The question is: what should the shape of the wire be, for the beam to arrive at the point (s¢, x¢)
in the least amount of time?

This is also a particular case of Control system: minimize fgf u(t, x,u)dt, with x’ = u.
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Figure 2.1: The Brachistochrone Problem

Denote by s and x the horizontal and vertical distances of a point on the path of the bead
(vertical distances are measured downward). We restrict our attention to wires describable as the
graph of a suitably regular function x(s), 0 < s < s¢. For any such function x, the velocity v(s) is
related to the downward displacement x(s), when the horizontal displacement is s, according to
the formula

mgx(s) = %mvz(s).

Denoting the time variable as t, we have

W(s) = /1 + |dx(s)/ds[?

dt(s)/ds !

and by integrating we get

St St 2
J dt:J v/1+|dx(s)/ds] ds.
0 0 v(s)

By eliminating v in the preceding expression and setting

14+ w?

L(s,x,w) = Y—n——,

V2gx

we arrive at the following formula for the transit time:

J(x) = J L(s, x(s),x'(s)) ds.

0

The problem is then that of minimizing the functional J(x) over some class of arcs x satisfying
x(0) = 0 and x(s¢) = x¢. This is an example of the basic problem.
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Suppose that we seek a minimizer in the class of absolutely continuous arcs. It can be shown that
the minimum time t* and the minimizing arc (x(t), s(t)), 0 < t < t* (expressed in parametric
form with independent variable time t) are given by the formulae

x(t)=a (1 — cos gt)
V a
s(t)=a (\/Etsin gt) ,
a V a

where the constants a and t* are uniquely determined by the conditions

The minimizing curve is a cycloid, with infinite slope at the point of departure: it coincides with
the locus of a point on the circumference of a disc of radius a, which rolls without slipping along
a line of lenght t¢.

The Basic Problem. In this chapter we will work under the following hypotheses:

* the variables of time, space and velocity be one-dimensional
* A :R® — R be a twice continuously differentiable function

% x: [a,b] = R be in C?[a, b]

and we will consider the Basic Problem:

minimize J(x) : x € C?[a,b], x(a) = A, x(b) = B. (B)

A function x : [a, b] — R is said to be admissible if it lies in C%[a, b] and satisfies all of the boundary
constraints in (B). J(x) is called the cost corresponding to the function x.
A solution x. of (B) (also referred to as a minimizer for the problem) is an unmissable function x.
such that

J(x4) < J(x) for all other admissible functions x

Necessary conditions for the basic problem. We introduce the notion of a variation, that is of a
function h € C?[a, b] such that h(a) = h(b). The Gateaux derivative of the integral functional | in
the direction of h(-) is defined as

AT = 060 + AR,
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Theorem 2.3 (Euler - 1744). If X is a solution of (B), then x satisfies the so called Euler equation

d

dt{Av(t,fc(t)»—c’(tn} AR, F () VL€ [a,b] 25)

Proof. The proof uses the idea of variation. If we define the single variable function
g(A) =J(X + Ah) (2.6)

we get that the Gateaux derivative is equal to

b

d
Irmo = ﬁ](i"‘)\h)h:o :J [Ax(t, x(1), %" )h+ Ay (t, %, %" )R] dt

d

(A)

We now set a(t) = A (t,%(t), %) and B(t) = Ay (t,%X,%’') and we have:

Integrating by parts we then get:

And the conclusion follows. O
A function x € C?([a, b]) which satisfies Euler’s equation is referred to as an extremal.

We wish now to develop an analogous result when looking for local minima of the integral func-
tional J. A function X, admissible for (B) is said to provide a weak local minimum if, for some € > 0,
for all admissible x : ||[x — %|| < e and ||x’ — &/|| < ¢, we have

J(x) > J(x).!
The proof of Theorem 2.3 can still be followed for a local minimizer, with the only difference being

that the function g will attain a local minimum at 0, rather than a global one.

We say that the Lagrangian A is autonomous if it has no explicit dependence on the t variable. The
following necessary condition for extremals is a consequence of the Euler equation.

Proposition 2.4. Let X be a weak local minimizer for B, where A is autonomous. Then X satisfies
the Erdmann condition: for some constant h, we have

(1) - Ay (R(1), % (1) — A(x(1),%'(t)) =hVt € [a,b]

lthe norm will always be that of L [a, b]. Thus [|x — %|| = max{[x(t) —x(t)|: t € [a, b]}.
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Proof. The conclusion follows once we have proven that the derivative of the function on the left

side is zero. This is a consequence of the Euler equation.

= ="(t) - Ay (X(1), %' (1) +X/(t) - % (A, xw) ) - % A2 0)]
= %" (t) - Ay (X(1), %' (1)) + %/ (1) - A (4, (1), %' (1)) +
=& (1) - Ax(R(1),%'(1) = x"(1) - Ay (R(1), %' (1)) =0

Example 2.5 (A minimal surface problem). Max lives in Prague; he likes to watch as street artists
create soap bubbles in the square. One day a juggler does something which Max has never seen:
he picks up two rings, submerges them in soap, and then creates a beautiful surface made out of

soap.

A classical example of the basic problem is that of finding the shape of the curve r(x) joining (a, A)

to (b, B) whose associated surface of rotation has minimal area.

When a soap surface is spanned by two concentric rings of radius A and B, the resulting surface

will be a surface of rotation of a curve r(x), and the area of the surface will be a minimum

Let OP be a generic point of the surface. In cylindrical coordinates we have

X =X,
OP(x,y,2) = OP(x,¢) = ¢ y =T(x)cosd,
The surface element is 0P  20P
_ |00P ovrl _ / 2
dA — o 30 T(x)y/1+71/(x)

Causing the total area of the surface to be
27T b
A= J dAdd = 271J r(x)4/1+ 1/ (x)2dx
0 a
So the problem now consists of the following

b
T(x)4/1 4 1/(x)2dx

subject to r(a) = A, r(b) = B.

minimize J
a

2thanks to D’Alembert’s principle for potential energy, which affirms that in static equilibrium, the observed configura-

tion minimizes total potential energy
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Or, in the notations of the basic problem,

b
minimizeJ x(t)y/1+ x/(t)2dt

a

subject to x(a) = A, x(b) = B.

That is, we have A(t,x,v) = xv1 + V2.

Suppose that % is a local minimizer for the problem, with x(t) > 0 for all t. The Euler equation is
given by

d
0— dt{m (fc(t),fc'(t))} AR, % () =
d 7—0—</ 7—</4 _,'_7—(/2 _,'_7—0—(//
— _ 1 212 — _ 1 212 —
Avitzz: VN T O +x

7 )—(/4 _|_)—(/2 -|—7_O_(”—(1—|—)_('2)2
- (1+,—‘/2)3/2

This gives us the equivalent

0=x"+x?+xx"—1-%"-2x?=-1-%"+3x' <
— x(t) = (1+x/(1)?) /x(1).
We deduce from this that X’ is strictly increasing (thus % is strictly convex). Since A is autonomous,

we may invoke the Erdmann condition (Proposition 2.4), yielding the existence of a constant h
such that

co!
M _5/1+x2=h <

1+x72
X2(t)

— (X))’ = & — L vtelabl

We immediately notice that the constant X = h is a solution, corresponding to the cylinder of
radius R = h.

By separation of variables we get, if we assume %’ to be positive throughout [a, b],

hdx
oo

This type of curve is called a catenary.

=dt = x(t) = hcosh (t:0> .

If %’ is negative on [a, b], instead, we get, in much the same way,
t+d
%(t) = kcosh (:) ,

for some constants k and d, at first sight different from h and c.
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In the general case, we have that X’ is negative up to a certain T € [a, b], and then positive there-
after. This means that X is a catenary (with constants k, d), followed by another catenary (with
constants h, ¢). It can be shown that the smoothness of X forces the constants to coincide; we can
then simply assert that the solution to the minimal surface problem is a catenary.
Such a catenary exists if the two rings are not too far apart with respect to their radius. Otherwise
the soap bubble "breaks"; this may be interpreted as if the solution is nonsmooth>.

Figure 2.2: Minimal surface solutions

We now wish to study second order conditions. To do so, we will strengthen the regularity hy-
potheses on the Lagrangian, by assuming that A is C3. We can then provide the following

Theorem 2.6 (Legendre’s necessary condition - 1876). Let x,. be a local minimizer for (B). Then

Avv(t,%(t),%'(t)) =0Vt € [a,bl.

The transversality condition. We now focus on variational problems in which the endpoint val-
ues of the functions x are not fully prescribed. This extra flexibility at the boundary gives us what
is known as the transversality conditions.

Let us consider the problem of minimizing

b
1(x(b)) +J At x(t),x/(t))dt

a

over functions x € C?([a,b]), satisfying the initial condition x(a) = A. The given function 1
(which we take to be continuously differentiable) corresponds do an extra cost term that depends
on the value of x(b), which is not prescribed.

R
Swhena=—1,b=1, A =B = R, the problem is of the form TC = cosh C. Depending on the length of 1 we have
the pictured situations
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Theorem 2.7. Let X be a weak local minimizer of the above problem. Then % is an extremal for A,
and % also satisfies the following transversality condition:

—Ay(b,x(b),%'(b)) = (x(b)).

Proof. If we impose B = %(b), it is clear that X is a weak local minimizer for the original problem
B. Thanks to Theorem 2.3 we then have that X is an extremal.

Let us now choose any functiony € C? ([a, b}) for which y(a) = 0. We define g as follows:
g(A) =1(x(b) + Ay(b)) + J(x + Ay),

where, as usual, we have set J(x) = fz At x(t),x/(1))dt.
It follows that g has a local minimum at A = 0; thus g’(0) = 0. Following the proof of Theorem

2.3, we get
b

V&wnwm+J[Mﬂmw+BMy%nm=a

a

From the Euler equation we have o = 3/, and integrating by parts we get
b
|| Tatenyto) + oy w]ae = projy (o)
Therefore we derive
[ (%(b))y(b) =0.
For the arbitrariness of y(b), we deduce 1’ (i(b)) + B(b) = 0, which is our conclusion. O

Generally, the solution to a problem of minimum in the Calculus of Variations does not belong in
C? nor in C1, as seen in the following

Example 2.8. Consider the problem
1

minimize J (x> —1)%dx: x(0) =0, x(1) =0.
0

It does not have a minimum in C!, but instead has a Lipschitz minimum, as in the Figure below.

0 1/2 1

Figure 2.3: Lipschitz minimum

The appropriate space in which to study the existence of minimums is, in fact, the space of AC
functions.



2.1. THE CALCULUS OF VARIATIONS 31

We then consider the basic problem
minimize J(x) : x € AC([a, b]), x(a) = A, x(b) =B, (P)
The following Theorem is extremely useful in this regard:

Theorem 2.9 (Tonelli, 1915). Let the Lagrangian A(t,x, v) be continuos, convex, and coercive of
degree r > 1: for certain constants « > 0 and (3 we have

Alt,x,v) = ov"+ BV (t,x,v) € [a,b] x R™ x R™,
Then the basic problem (P) admits a solution in the class AC([a, b]).

Autonomous Lagrangians. The purpose of this paragraph is that of proving that, under certain
hypotheses, solutions to the problem (P), which we have seen to be AC a priori, are Lipschitz.

In order to do so, we will need the following notions:

Definition 2.10. A function X, admissible for the basic problem (B), is said to provide a strong local
minimum if there exists an ¢ > 0 such that, for all admissible functions x satisfying ||[x — X|| < ¢,
we have J(x) > J(x).

Remark. We observe that a strong local minimizer is automatically a weak local minimizer.

Definition 2.11. We say that a Lagrangian A has Nagumo growth along X if there exists a function

t
0:Ryo — R, satisfying thT - = +o0, such that
— 400

tela,b], veR" = A(t,x(t),v) = 0(Iv]).

The following result, due to Clarke and Vinter, is a fundamental result of the Calculus of Varia-
tions for autonomous Lagrangians, and is a great is a great application of Nonsmooth Analysis.

A Lagrangian A is said to exhibit the Lavrentiev phenomenon if the infimum taken over the set of
absolutely continuous trajectories is strictly lower than the infimum taken over the set of Lips-
chitzian trajectories, with fixed boundary conditions. The occurrence of this phenomenon pre-
vents the possibility of computing the minimum.

This Theorem gives a set of sufficient condition for this phenomenon not to occur and, as such, is
of enormous importance:

Theorem 2.12 (Clarke-Vinter, 1985). Let x € AC([a, b]) be a strong local minimizer for the basic
problem
minimize J(x) : x € AC([a, b)), x(a) = A, x(b) =B, (P)

where the Lagrangian is continuous, autonomous, convex in v, and has Nagumo growth along x.
Then % is Lipschitz.

Before attempting to prove this result, we need some instruments from the multipliers theory.
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The multiplier rule. Consider the following problem of optimization, in the convex case:

—

minimize f(x
(x) <0,
(x) =0,
x € S.

N

subject to
©

- @

where S is a convex subset of a real vector space X, the functions
f:S—>Rand ¢gi:S—R(i=1,...,m)

are convex, and the functions
hj:S—=R,j=1,...,n

are affine.

The following is a Theorem of the Multiplier rule where, as opposed to the classic version (see
Theorem 9.1 in [5]), we do not require for % to lie in the interior of S.

Theorem 2.13 (Kuhn-Tucker). Let % be a solution of (C). Then there exists (n,y,A) € Rx R™ xR™,
referred to as a multiplier in the convex sense, satisfying:
the nontriviality condition

(M, v,A) #0,

the positivity and complementary slackness conditions

0 -
le{ 1 /Y>O/ <Y/9(X)>=O,
and the minimization condition
{nf+ v, }x) = {nf+(v,9) + (A h)}(x) =nf(x) Vx € S.
We are now ready to prove Theorem 2.12.

Proof. Let % be a solution of (P) relative to ||x — X|| < e. By uniform continuity, there exists 5 €
(0,1/2) such that

t,T€a,b], t—1<(b—a)d/(1-8) = |x(t) —%x(T)| <=

Step 1. We consider a measurable function « : [a,b] — [1 —§,1 + 8], satisfying the equality
fz a(t)dt =b — a.

For any such «, the relation t(t) = a + J":l «(s)ds defines a bi-Lipschitz one-to-one mapping of
[a, b] onto itself; it follows that the inverse mapping t(T) satisfies

d 1
0= ()’ t(t) =1l < (b—a)

1—5 a.e..

We now proceed to define and arc y(t) = i(t(’t)). Then y is admissible for the problem (P), and
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satisfies ||y — x| < e. But % is a strong local minimizer, and so we get

b
J Ay(T),y'(1))dT > J(%).
Applying the change of variables T = 1(t) to the integral on the left, and since y' (1) = x' (t(1)) /ex(t(7))
a.e., we obtain:

b

JbA(ym,y'(r))dT:J

a

Ay (x(0),y' (x(0) )7 (1 dt =

a

b
_ J A(R(1), %' (1) /() a(t)dt > J().

a

We note that equality holds for & = 1. We will now show that « solves a certain minimization
problem.

We now introduce the function ®(t, x) = A(i(t),)‘c’ (t)/ oc) a. The function @ (t,-) is then convex
on the interval (0, +00), for all t € [a, b]. Consider the functional f given by

b
flx) = J O(t, oe(t))dt,

which is well defined when « is measurable and has values in the interval [1 — 6,1 + 8]. It also

follows that f is a convex function.

By continuity we have that, for almost every t there exists a 5(t) € (0, 8] such that, for all & €
O(t,1)—1<O(t, ) <O(t,1) +1.

Thanks to arguments of measurable selection theory, we can take 6(-) to be measurable.

We define S to be the convex subset of X := L*([a, b]) whose elements « satisfy the condition
o(t) € [1—58(t), 1+ 0(t)] ae.

Consider now the optimization problem on the vector space X which consists of minimizing f
over S, subject to the equality constraint

b
h(x) = J a(t)dt.(b —a) =0.

a

Let’s call (Q) this problem. This means that & = 1 solves (Q).

Step 2. We now apply Theorem 2.13, obtaining a nonzero vector { = (n,A) € R? (whithn =0 or
1) such that
nf(a) + Ah(x) > nf(&) V x € S.

We now want to show thatn = 1.
Suppose 1 = 0. We then have

nf(a) + Ah(x) > nf(&) Va e S <= Ah(x) 20V axeS
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But A # 0, so we have

h(x) >0V eSS
or
h(a) <0VaxeS

The condition h(«) > 0V « € S is equivalent to

b
J x(t)—1dt > 0Va €S,

a

from which we have a contradiction since, taken «(t) := 1 — 6(t), we have « € S and

b
J (ee(t) —1)dt = —5(t)(b—a) < 0.

a

In the same way we have that also the condition h(«) < 0V « € S leads to a contradiction.

We can then suppose 11 = 1. We then have, for any « € S, the inequality

b

Jb {A()Z(t),)'c’(t)/oc(t))oc(t) + Acx(t)}dt > J {A()Z(t),)’c’(t)) + A}dt.

Invoking a result on multifunction (Theorem 6.31 [2]), we deduce that, for almost every t, the
function
o = B¢ (o) == A(X(t), ®'(t) /o) x + A

attains a minimum over the interval [1 —5(t), 1+ 5(t)] at the interior point o« = 1. Let us fix such a
value of t. Then the generalized gradient of 0; at 1 must contain 0. From nonsmooth calculus we
have

A(x(t),x'(1) — (X'(1), (1)) = —A ae, 1)

where ((t) lies in the subdifferential at ]7‘(’ (t)| of the convex function v — /\()‘c(t), v).

Step 3. What is left is only to prove that |>‘<’(t)| is bounded for a.e. t € [a, b]. Suppose we are in
the conditions for (1) to hold. Then we have, using the subgradient inequality,

WV

A()‘c(t),fc’(t){l T b—c’(t)}*l) — A(R(1),%/(1) ?)
> {1+ 0} 1] ® ), ) =

_ [{1 +RY - 1} {/\(i(t),)‘c’(t)) + 7\}.

We now choose M to be a bound for all values of A at points of the form (i(t),w), with t € [a, b]
and w € B(0, 1), using the hypothesis of Nagumo growth and inequality (2), we have:

O(IX' (1)) < A(X(1),%'(t)) < M+ (M + A% (1)].

From this we can conclude that |>’<’ (t)| is bounded for a.e. t € [a, b]. O
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2.2 Controllability

The question we have to ask ourselves before going any further is this one: given the initial point
xo and a farget set S C R™, does there exist a control u that can steer the system to S in a finite
time?

To simplify the discussion, we will consider the problem of driving the system to the origin, that
is we will suppose S = {0}. In other words, we will ignore any pay-off criterion, and instead focus
on the pure existence of a control that can steer the system to the origin.

Definition 2.14. We define the controllable set for time t to be
C(t) = set of initial points x for which there exists a control such that x(t) =0,
and the overall controllable set to be
C = set of initial point s xg for which there exists a control such that x(t) = 0 for some finite time t.

Clearly, we have

c=Jcw.

0

To further simplify the matter, we will assume for the rest of this section that the ODEs we are
studying are linear in both the state x(-) and the control u(-):

{X(t) = Ax(t) + Bu(t)

where A € M™*™" and B € M™*™. We also assume that the set U of control parameters is a cube
inR™: U=[-1,1]™.
Recalling the variation of parameters formula for the solution of ODEs, we have (for a given

control u(+)):
t

x(t) = e"xo + e J e ™ (s)Bu(s)ds.
0

If Y ={u:R — U, measurable}, then we have that

t

xelCHt)eJu-)eld: x(t) =0 xg = —J e SABu(s)ds for some u(-) € U.
0

Theorem 2.15 (structure of the controllable set). With the above notations and assumptions we
have that:

a) the controllable set C is symmetric;

b) the controllable set C is convex;

) if xg € C(1),thenxy € C(t) Vt > 1.
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Proof.  a) Lett > 0andxg € C(t). Thenxy = — J"S e SABu(s)ds for some admissible control u(-) €
Uu.

Therefore —xg = — JS e $AB(—u(s))ds, with —u € U, since U is a symmetric set. This means
that —x¢ € C(t), and so also the set C(t) is symmetric. It follows that C is symmetric.

b) Take xo, %o € C; so that xg € C(t), %o € C(t) for appropriate times t,t > 0.

Assume t < f. Then:

t
Xg = —J e SABu(s)ds for some control u(-) € U,
0

t
Ro = —J e SABu(s)ds for some control u(-) € U.
0

If we now define a new control

i(s) = u(s)if0 < s <t,
)= Oif s > t,

then we have

t
Xg = —J e SABi(s)ds,
0

hence xy € C(1). Now let 0 < A < 1, and observe

Axo+ (1 —A)Rg = — r e SAB(At(s) + (1 —A)a(s))ds.
0

Therefore Axg + (1 — A)&o € C(t) C C, which proves convexity.

c¢) Follows from b), if we take t = {.

Definition 2.16. We say that a linear system is controllable if C = R™.

Definition 2.17. The controllability matrix of a linear system of the form x = Ax + Bu is the
n x (mn) matrix G = G(A, B) := [B,AB,A”B,..., A" 'Bl.

Theorem 2.18. Let C° for the interior of the set C. Then we have

rank G=n < 0€C°. (2.8)

For a proof of this Theorem see [4] page 19.

Theorem 2.19. Let U be the cube [—1,1]™ C R™. Suppose that rank G = n and Re A < 0 for each
eigenvalue A of A. Then the system x(t) = Ax(t) + Bu(t) is controllable.
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Proof. [4] Thanks to Theorem (2.18), since rang G = n, we know that C contrains some ball B
centred at 0. Now take any xo € R™ and consider the evolution

x(t) = Ax(t).
x(0) = xo.

Since Re A < 0 for each eigenvalue A of A, then the origin is asymptotically stable (Lyapunov).
So there exists a time T such that x(T) € B C C; and hence there exists a control u(-) € U
steering x(T) into 0 in a finite time. O

2.3 Pontryagin Maximum Principle

We are now ready to write our first maximum principle, whose first version dates back to the 1960s.

Let us first recall our working hypotheses, the classical regularity hypotheses:
* the function 1 is continuously differentiable;

x the functions f and A are continuous, and admit derivatives relative to x which are contin-
uous in all variables (t, x, u).

We also recall the problem we are trying to solve, the standard Optimal Control Problem:

b
minimize J(x,u) = l(x(b)) +J At x(t),u(t))dt

subjectto  x(t) = f(t,x(t),u(t)), t € [a,b] a.e. (0OC)
u: [a,b] — U, measurable
x(a) =xg, x(b) € E

The following is Clarke’s version of the Pontryagin Maximum Principle. The original version
requires the target set E to be a smooth manifold. After Pontryagin, there have been many ver-
sions that required always less regularity hypotheses (namely by Clarke, Sussmann, etc.). In this
version E is any closed subset of R™.

Clarke went on to further generalize this result, by not requiring that f be regular.

Theorem 2.20 (Clarke’s nonsmooth version of Pontryagin Maximum Principle). Let the process
(%, ) be a minimizer for the problem (OC), under the classical regularity hypotheses, and where
U is a bounded set.
Then there exist an absolutely continuous arc p : [a,b] — R™ and a scalar 1 equal either to 0 or 1
such that the following conditions are satisfied:

the transversality condition

—p(b) € nVL(X(b)) + Ng (x(b)) (2.9)

—p(t) =p(t) - fx (t, (1), p(t), T(t)) —nAL(t, x(t), u(t)) a.e. (2.10)
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the maximum condition

p(t) - f(t,x(t),ult)) = rnea&(p(t) - f(t,%,u) a.e. (2.11)

The adjoint equation and the Maximum condition can be rewritten in terms of the Unmaximized
Hamiltonian associated to the problem OC:

H(t,x,p,u) =p(t) - f(t, x,u) —mA(t, x,u)

so as to obtain the following:

—p(t) = DK (t,x(1), p(t),1(t)) ae. (2.13%)
HO (¢, x(t), p(t), u(t) = max HO (¢, %(t), p(t),u) ae. (2.14%)

and the state equation
x = f(t,x(t),a(t)) = DpyH" (¢, x(t), p(t), u(t)) (2.12)

Remark. Writing the adjoint and state equations in this form
X = D‘p Hn (t/ X, P/ u)/ _p = DX;LLY| (t/ X, P/ U)

emphasizes their affinity with a classical Hamiltonian system of differential equations, with an
extra control term present.

In the abnormal case 1 = 0, we notice that the two components, 1 and A, of the cost, do not explic-
itly appear in the conclusions of the maximum principle. We want to show that this case is indeed
a pathology, and does not happen when the final state value x(b) is (locally) unconstrained.

Corollary 2.21. Under the hypotheses of Theorem 2.20, suppose that E = R™ or, more generally,
that X(b) € int(E). Then the maximum principle holds withn = 1.

Proof. Let us suppose that the maximum principle holds with 1 = 0, and obtain from this a
contradiction.

If x(b) € int(E), we have NE(x(b)) = 0. The transversality condition implies that p(b) = 0. When
1 = 0, the adjoint equation reduces to the following linear differential equation for p:

—p(t) = p(t) - Fx (£, X(1), p(t), 0(t)).

But any solution p of such linear differential equation that vanishes at one point (p(b) = 0) nec-
essarily vanishes everywhere, violating the nontriviality condition of Theorem 3.1: a contradic-
tion. O

The Pontryagin Maximum Principle provides a practical method for finding solutions to the prob-
lem OC. We first have to define the function 1 in terms of the maximum condition

p(t) - f(t, x(t), 0(t) = maxp(t) - f(t, %, u).
ueu
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Thanks to Theorem 2.20 we know that, if an optimal control u does exist, it must be found among
the solutions of the 2n differential equation system in the variables x and p:

{x = f(t,x,u(t)) (2.13)

P =—p(t) - fi(t, (1), p(t), W(t)) + nA(t, x(t), u(t)

The equations 2.13 do not constitute a Cauchy problem on R™, so a solution is not easily found,
unless the equations for p and x can be uncoupled. This is what happens in some particular cases.

In all of the examples that we provide, we are going to assume the existence of an optimal solu-
tion.

Consider the following:

Example 2.22 (Linear pendulum with external force). [1] Let q be the position of a linearized
pendulum, controlled by an external force u, with magnitude constraint [u(t)| <1, Vt.

For simplicity’s sake, let us assume that the initial position and velocity are both zero, and that
the motion is determined by the equations

gq(t) + q(t) =u(t), q(0) = q(0) =0.

We wish to maximize the displacement q(b) at a fixed terminal time b.

Introducing the variables x; = q, X, = ¢, the optimization problem can be formulated as

maxxq(b,u),
uelu

where the dynamics is described by

{X'l =X x1(0) =

0
Xp=—x1+u x(0)=0

7

and the set of admissible control is

U ={u:[0,b] — [—1,1],u measurable}.

X 0 1
f(t,x,u) = (—x12—|—u>’ D,f = (_1 0).

In this case the adjoint equations take the form

pr=p2 Pi(b)
p2=-p1 p2(b) =

We then have:

1,

These equations can be solved for p independently of x, yielding

p1(t) =cos(b—1t), pa(t) =sin(b—1t).
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By the maximum condition we have that the optimal control i satisfies

Pix2 +pa(—x1 + 1) = ‘T‘% {p1x2 + pa(—x1 + U}

Therefore, the optimal control is
@ = sgn(pz(t)) = sgn(sin(b —t)).

Notice that the trajectories corresponding to the constant controls u = 1 or u = —1 are circles
centred at (1,0) or (—1,0), respectively.

Figure 2.4: Trajectories in the phase plane for the linear pendulum

The optimal control for when b = 377-[ is then:

) — —1 if0<t<m/2,
B 1 ifm/2 <t < 3m/2.

as highlighted in Figure 2.4.

2.4 Problems with variable time

What we have seen thus far are Optimal Control Problems in which the underlying interval is
fixed. An important feature of certain problems is that the interval is itself a choice variable. Such
a problem, in which the interval [a, b] can vary, is referred to as a variable-time problem.

In this section we will consider the following form of the optimal control problem (note that f and
A do not depend on the time variable t. This means that we can choose the initial point to be 0,
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without loss of generality):

T

minimize J(t,x,u) = (7, x(7)) —|—J A(x(t),u(t))dt
0
subjectto T>0
() = fx(D,u(t), t € 0,1 ae. (V)
u: [0,t] — U, measurable
x(0) =xo, (T,x(7)) €S

Remark. If the set S is of the form {T} x E then the problem (VT) reduces to a fixed-type problem
like those we have already studied, since the terminal point T is uniquely determined.

Example 2.23. The minimal-time problem consists of finding the process (x, u) on an interval [0, 7],
such that x(t) = 0 and 7 is the least time for which this is possible.

Of course, this corresponds to finding the quickest trajectory to the origin. In the notations of (VT)
wehave S =R, x{0},l=0,A=1(orl=71tand A =0).

Since we now have a varying terminal point, we need to extend the concept of local minimum to
variable-time problems.

If two arcs, x; and x, are defined on two different intervals, [0, T;] and [0, 2], we need to be able
to measure their distance. We define the expression

— x| = t) —xa(t)],
X1 — x2| r{l;glxl() X2 (t)]

where we have extended the arcs by setting x1(t) = x1(71) Vt > 71, and x,(t) = x2(12) V't > To.

Definition 2.24. A process (%, 1), defined on the interval [0, 7], and satisfying the constraints of
(VT), is said to be a local minimizer if there exist an ¢ > 0 such that, for all processes (x, u) on an
interval [0, T] which satisfy the constraints of (VT) and such that |t — 7| < e and ||x — X|| < ¢, we
have J(T,%x, 1) < J(T,%,u).

Recalling the definitions and hypotheses of Theorem 2.20 we have the following:

Theorem 2.25 (Variable-Time Maximum Principle). Let the process (%, 1), defined on the interval
[0,7], T > 0, be alocal minimizer for the problem (VT), under the classical regularity hypotheses,
and where U is a bounded set.
Then there exist an arc p : [0,7] — R™ and a scalar 1 equal either to 0 or 1 such that the following
conditions are satisfied:
the non-triviality condition
(n,p(t)) 0Vt € [0, 7] (2.14)

the adjoint equation
—p(t) = Dy H" (¢, x(t), p(t), u(t)) a.e. (2.15)
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the maximum condition

HO (¢, x(t), p(t),ult) = max HO(t,%(1),p(t),u) ae. (2.16)

and such that, for some constant h, we have
the constancy of the Hamiltonian

HO (t,x(t), p(t),ult)) = max HO(t,%(t),p(t),u) =h ae. (2.17)

as well as
the transversality condition

(h,—p(b)) € nVL(%,%(%)) + N5 (T, %(T)). (2.18)

Remark. When § is of the form {T} x E, the transversality condition reduces to the transversality
condition of Theorem 2.20.

Example 2.26 (soft landing). [2] This simple model is an interesting case of the minimal-time
problem. The goal is to bring a spacecraft to a soft landing on the lunar surface in the least time.

We consider the dynamics
X(t) =u(t) € [-1,1].

We want to find the control u that steers the initial state/velocity pair (x, vo) to rest at the origin
(x = x = 0) in the least time.

As usual, we introduce a second state variable, so that the second-order equation above takes the
form of a first-order system:

(;Eg) - <8 é) (;Eﬂ) T (ﬁ’) w(t), wlt) € (1,1,

This is a linear system, withn =2 and m = 1. We take l(t,x) =1, A =0, S =Ry x {(0,0)}. We
now apply Theorem (2.25), admitting the existence of a solution.

The Hamiltonian is H" (x,y, p, 4, u) = py + qu, so the adjoint system is given by
p(t) =0, —q'(t) =p(t).

This means that p(t) = po for some constant py, and that q is an affine function.

The transversality condition implies h = .

If g = 0, then also p is identically 0; but then we would have h = n = 0, which violates the
non-triviality condition. We conclude that q is not identically zero and thus, being affine, changes
sign at most once in [0, T].

The constancy of the Hamiltonian yields poy(t) + q(t)u(t) = h for some constant h.
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The maximum condition then implies that the optimal control is u = +1, known as a bang-bang
solution. The plus or minus sign depends on the sign of q, that is the optimal control is equal to
1 almost everywhere up to a certain point, then —1 thereafter, or else the reverse. In other words
u is piecewise constant, with values in {—1, 1}, and exhibits at most one change in sign.

The trajectories (x,y) for the constant control value u = 1 lie on parabolas of the form 2x = y? +c,
since we have 2x — 2yy = 0; the movement is upward since yy = 1. Similarly, the trajectories
(x,y) for u = —1 correspond to parabolas of the form 2x = —y? + ¢, with a downward motion.
If a time-optimal strategy does exist (we have seen in Section 2.2 that the system is completely
controllable) then it is described as follows:

_ )41 if (x,y) lies to the left of I,
e —1 if (x,y) lies to the right of Z,

where £ is the switching curve, defined as £ = {(—y?/2,y) : y > 0} U {(y*>/2,y) : y < 0}, is
obtained, for example, by beginning at a point on the positive y-axis, and following a downward
parabola until its intersection with the unique upward parabola passing through (0,0); finally
following that one to the origin.

ER/

Figure 2.5: Sample trajectories for u = +1 and for u = —1, and an optimal trajectory starting from
the positive y-axis

We can now compute the corresponding optimal time

xu) —y+v2y2 —4x if (x,y) lies to the left of £,
T(x,y) =
+y 4+ v2y2 +4x  if (x,y) lies to the right of I.

We have said, in the Preface of this dissertation, that we would study the general case in which
the target set E is a closed subset of R™. The following example shows that this generalization
serves an actual purpose: here the target set will not be a manifold.

Example 2.27. Consider the system

(XLXZ) = (2LL1,‘LL2), (ulluZ) € Rz/ |(U1,1L2)| < 1/
(x1(0),%2(0)) = (x1,%,) € RAS, (2.19)
(x1(1), x2(1)) €S
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where S = {(x1,%2) € R?: x; < [x2[}, and 7 is the first instant for which the trajectory isin S.

The problem is that of minimizing t. As usual, we admit the existence of a solution. Under the
notations of the Maximum Principle we have the following

minimize [; 1dt,
subjectto T>0
(%1,%2) = (2uy, u2)
(ug,up) € R? (2.20)
I(w, W)l <1,
(x1(0),%2(0)) = (x1,%,) € RA\S,
(x(1),x2(7) €S

This is a minimum-time problem, and so we take l = 0 and A = 1. Let x = (x1,%2), u = (u, uz)
and p = (p1,p2).

v

Figure 2.6: Some proximal normal directions to S

We now consider the Unmaximized Hamiltonian
H(x,p,u) =p(t) - f(t,x,u) —mA(t, x,u) = 2p1us +paup — 7.
From the maximum condition we obtain:

2pitiy +paliz —M = max 2pius +pauz —m =h,
ui+us;<1
that is

2ply + poli; = max 2pjug + paus.
u?+u<1
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Since the limiting normal cone is as portrayed in Figure 2.6, the transversality condition yields:

—p(1) € NE(x(1)) € {?\ (ﬂ) A (;}) } A 0.

From the adjoint equation we obtain that —p = 0, which means that p; and p, are constant.
We then have two situations:

First Case. —p1 =A >0 = p1=—A, p2=A.

max H'(x,u) «— min 2u; +u,.
lul<1 uw4ui<l

We know that the minimum is taken for points in the border of the disc {u? + u3} < 1, and so we
have that the values of u; and u, that obtain the minimum are such that:

2 W =0 21,L2 = U up = 2u2
1w =<, —
Since we want to minimize the function 2u; + u, = 5u,, we have u, = —1/v/5 and u, = —2/+/5.

We can then write the equations of the motion
X1 =2u; = —4/V5 x1(t) = —4/V5t +x
=
X2 =U.2=*1/\/g Xz(t)zfl/\/g‘t+§2

We now wish to compute the minimal time 7. Since x,(t) = [x1(7)|, we have the following situa-
tion:

X2 (T) = x1(7) —4/\VBT+x; = —1/VB1 + %, x; — X, =3//57
or — or — or
x2(T) = —x1(7) —4/\VBT+x; =1/V51—x, X, + %, = V51

But x; —x, < 0, so the only admissible solution is
Lo X + X
V5

Second Case. —p1 =A< 0 = p1 =\ pr=—A.
In much the same way as previously, we have that the values of u; and u, that obtain minimum
are such that:

‘21 =0 —2uy =y u, =+1/V5
—1 U — ) 2 _q <~ 2/ 5
Wil =1 uptuy = w = F2/v5

Since we want to minimize the function 2u; — up = —5u,, we have u, = —1/v/5 and u, = 2/+/5.



46 CHAPTER 2. OPTIMAL CONTROL

We can then write the equations of the motion

X =2u =4/V5 x1(t) = 4/V5t +x
<
X =u, =-1/V5 x2(t) = —1/V5t +x,

We now wish to compute the minimal time t. We have the following;:

x2(7) = x1(7) 4/V5ht+x =1/VBht—x —x1 —xp = 3/V/51
or — or — or
x2(T) = —x1(7) 4/7/51t 4% = —1/V/51+ %, —X; + Xy = V5T

But —x; — x, < 0, so the only admissible solution is

Xo —Xq
\/g 7

We then have two possible minimum times, and we wish to compare them:

T =

Xp —Xq X;+Xo

VG

— x; =2 0.

In conclusion we have:

% If x; >0, thent = M:@M , with optimal control @ = (2/v/5,—1/1/5)

* Ifx; <0, thent = El\%& , with optimal control @t = (—2/ V5,—1//5)

We observe that this solution for the minimal-time problem is not differentiable for x; = 0.
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