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Introduction




INTRODUCTION

The object of this talk is the Vicsek model.

— Itis an individual-based model, where the particles are
self-propelled, and have same constant velocity;

— The interaction is one of alignment, in the presence of noise;

— The discrete-time dynamics is given by
Xi(t + At) = x;(t) + vi(t) At,
where the speed is of the form
v = |v[el?®,
with constant norm, and direction given by the angle
I(t+ At) = (9(t)) + AY.
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INTRODUCTION

Figure 1: Simulation of
300 individuals after
200 time steps of the
Vicsek model, with
parameters L = 25,
noise n = 0.1.
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INTRODUCTION

Once we have provided the time-continuous version of this model,
we are going to discuss its mean-field limit, as well as its large-scale
behaviour.

The time-continuous dynamics is given by N particles, the position
and velocity of which evolve according to

dxiN = viN dt,
dvih = v2d (1-ViN @ ViN) o dB] + (T — ViN @ Vi) N dt,

where

EZ\

N
Z XJ N XI N VJ N
is the K-weighted momentum of the i-th particle.
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Mean-field limit




MEAN-FIELD LIMIT

LetfN =& ZL 5(X{,N7V{,N)(x,v) be the empirical distribution. Its limit
as N — oo is given by a probability density function f satisfying

6tf+v-fo+ Vv' ((H—V@V) Tff) = dA\,f7 (1)
where
Je(x) == / K(]x — yDf(y, v)v dydv, forall x € R".
JR"XS

There exists a pathwise unique global solution to

dXi = Vi dt

dVi = v2d (I - Vi @ Vi) o dB} + (I — Vi @ Vi)J;.(X}) dt

(X6, Vo) = (%", Vg"), fo = Law(X;, W),
with initial data (XBN,VL’N) fori=1,...,N.
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MEAN-FIELD LIMIT

Moreover, we can prove the following

Theorem (Propagation of chaos)
There exist N independent processes (X, Vi)>o with law f, such

that c
i,N vi i,N \/i
B[ - X2+ v - ViP] <

forall0<t<T,N>11<i<N.
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Macroscopic scaling




MACROSCOPIC SCALING

We perform a hydrodynamic scaling.

We set X = ex, t = et, and define

» (X, 1) = fx v, 1) KER) = & K(x);
> 2 (x,t) = Js (K ) (x, v, t)v dv,

Equation (1)
O +v-Vif +Vy - (I-vev) i f) = dAf,

can then be rewritten as
e(OfF +v V) = =V, - (I - v V)ef) + Af, ()

Studying its limit as € — 0 means observing the large-scale
behaviour of the model.
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MACROSCOPIC SCALING

The first thing to notice is that, as ¢ — 0, we get the following
expansion:

T (6, i)l o= /%(KE * F9)(x, v, t)v dv = /S (X, v, t)v dv + O(£?).

We write Ji(x,t) := [; f(x,v,t)v dv. Ignoring the O(?) term, we can
then rewrite (2) as

e(fF + v - Vif) = Q(F), 3)
where Q(f) := =V, - (I - v®V) Js f) + Afis the collision operator.
Since Q(f) is the only term of order zero in ¢, particular interest lies
in the equilibria of this operator, i.e. the functions f such that
Q(f) = 0.
Since Q acts only on the v variable, in the following we consider
(x,t) fixed, so we study the case of equilibria f = f(v).
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Definition (Von Mises-Fischer distribution)

We introduce the Von Mises-Fischer distribution with concentra-
tion parameter > 0 and orientation Q € S as the probability
density on the sphere defined by

ehiV'Q
Mea(V) = ————, VveES.

(/S efi WQdW
Notice that

' f
onfeoe ()
d/' hnh S Anh

so that an equilibrium feq(v) has to be of the form

2
Aﬂh dv <0,

feq(V) = oMya(V),
for o > 0,Q €S, and x > 0 that has to satisfy an implicit condition.
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COMPATIBILITY CONDITION

In fact, since the following has to hold
KQ =g, = /v feq(v) dv = /V,Q Muq dv = 0w, = 0 ¢(k)Q,
s s

we get feq(V) = oM,()a(V), with £ = k(o) such that the following
compatibility condition holds:
oC(k) = K, (cc)

Jo cos¥er<es? sin" 2 ydy
o encos? sin" 2 ydy

where ¢(k) = (V- Q)m., = (cosI)m,

10/23



Since <) 1 as k — 0, we find that the compatibility condition

K

leads to the following phase transition:

Proposition (Phase transition)
» o < n. Uniqueness of the equilibrium.
x = 0 is the unique solution of (CC). The only equilibria are
h = o for an arbitrary 0 < o < n.
» o> n. Two equilibria.
(CC) has 2 roots, k = 0 and «(e) > 0. The equilibria are:

h =0 > n; oM, (,)a, for o > nand Q € S arbitrary, which form
a manifold of dimension n.

Moreover, in the first case, the equilibria are stable while, if o > n,
then the equilibria h = p become unstable and there is
exponentially fast convergence to the Von Mises-Fischer ones.
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STUDY OF CONVERGENCE

Fix e > 0, and come back to
e(Of* + v - Vi) = Q(f). (4)
Assuming space-homogeneity, and considering g° = /¢, we get

Theorem (Existence of a solution)
Suppose gp is a probability measure, belonging to H(S). Then
there exists a unique weak solution g to

e(g) = —0°Vu - ([ — w @ w))g8%) + Aug", (5)

with initial condition g(0) = go. This solution is a classical one, is
positive for all time t > 0, and belongs to C>((0, +00) x S).
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STUDY OF CONVERGENCE

Theorem (Convergence rates)

The long time behaviour of the solution g depends on the value
of Jg,, in fact:

» IfJg, = 0 then (5) reduces to the heat equation on the sphere,
and g converges exponentially fast to the uniform distribu-
tion in any HP form.

» If Jg, # 0 then we have 3 possibilities:

— ©° < n: g converges exponentially fast in any HP norm to
the uniform distribution.

— ©° = n: g converges to the uniform distribution in any HP
norm, with algebraic asymptotic rate 1/2.

— ©° > n: there exists Q € S such that g converges expo-
nentially fast to M, (<)o in any HP norm.
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ORDERED AND DISORDERED REGIONS

Let's get back to the space-inhomogeneous case. We need to
specify the dependence of p and Q on (x,t).
What we have just seen inspires us to consider two distinct regions:

— A"disordered” one

Rg={(X,t) eR" xR} : n—o°(X,t) >ease |0},
— And an "ordered” one

Ro = {(X,t) eR" xRy : ¢°(X,t) —n>ease |0}

We assume that
IimOfE(x,v, t) = o(x,t), for all (x,t) € Rq;
E—>

lim fE(X,V, t) = Q(X,t)MK(g)Q(X_’t% for all (X, t) € Ro,

e—0

where the convergence is as smooth as needed.

14/23



DISORDERED REGION

In the disordered region, where o < n, we have that Jz- — J, = 0, and
atg =0.
Theorem
For e — 0, the formal first order approximation to the solution of
the rescaled mean-field system (3) in the disordered region R4 is
given by
nw - Vxo°(X,t)
(n—1)(n—o°(x,t))’

where the density ¢° satisfies the following diffusion equation:

0e® = - 1 (Vx- nv—xg;)'

fE(X,w,t) = QE(Xv t) -
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ORDERED REGION

If o > n, then the following holds

Theorem
Fore — 0, the formal limit of the solution f¢(x, v, t) of the rescaled
mean-field system (3) in the ordered region R, is given by

(X, )M, (ox, 20,0 (V),

where x = r(0) is the unique positive solution to oc(x) = k.
Moreover, the local density o and the mean orientation Q € S
satisfy the following first order PDE system

{atg + Vyx - (0cQ) =0 ©)

0(Q+E(Q- VX)) + MI - Q®Q)Vio =0,
for an appropriate coefficient €(x(g)) and a parameter A(o).
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A generalization




A GENERALIZATION

We consider the same model as before, but now we assume that the
flock is comprised of two different populations, let's say A and B,
that differ in their dynamics for the diffusion coefficient.
More precisely, the dynamics of our model is given by the coupled
system
dxi = vidt, dvi = widt
dVi = v2d(I — Vi ® Vi) o dB} + (I — Vi @ Vi)Ji(X})dt 7)
dW} = V2b(I — W} ® W}) o dB} + (I — W} @ W)Ji(Y)dt

where, for Z| = X} or Y}, the function ] is defined as

Na
a1
J{(z;):N—AZK(\z' X)) v’+—Z|< 12— Yi|wi.

=1
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A GENERALIZATION

Following what we have done in the previous case, it is easy to
obtain

{tht + V- fot = —VV . ((H -V V)Tf+gft) + d Avft (8)

g +V- Vg =-Vy (I-ve® V)lrig8t) + b Avgr.
We expect the equilibria to reflect, in some way, the difference in

the diffusion coefficient of the two populations. Again, we define
the collision operator

Q(f) = =Vy - (I - v V)leigf) +d A,

and are interested in the functions f such that Q(f) = 0. In order to
do so, we introduce a modified Von Mises-Fischer distribution

KV-Q

e d
= KEW-Q °
Jse e dw

MgQ(V)
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It is easy to show that, if f and g are two functions such that Q(f)
and Q(g) are zero, then they are of the form

v-Q v-Q
f=or Crexp (Iﬁd) g =0g Crexp (Kb) (9)

and the new compatibility condition reads

1 a9 g, /D)

k/d k/b i)
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PHASE TRANSITION

Since &) % as k — 0, we can summarize our results as

Compatibility condition

— If dof+bog < n, then x = 0 is the unique solution of (10). The
only equilibria are the isotropic ones, f = gr and g = gg.

— Ifdos+bog > n, then (10) has 2 roots: < = 0 and x(g) > 0. The
equilibria for k = 0 are f = grand g = og; the ones associated
to x (o) consist of the Von Mises-Fischer distributions ngg(g)Q
and ogMp . for Q € S arbitrary.
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CONVERGENCE RATES

Definition (Convergence rates)
Let X be a Banach space with norm ||-|| and let f: R, — X.

» We say that f converges exponentially fast to a function f.,
with global rate r if there exists a constant C = C(||fo||), such
that

If(t) — ool < Ce™™

forallt > 0.

» We say that the convergence is of asymptotic rate r if the
above holds for a constant C = C(f,) depending on f, and
not only on ||fo||.

» We say that the convergence is of asymptotic algebraic rate
« if there exists a constant C = C(fp) such that

If(t) — foo || < C/t%
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