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Q: Can active outperform passive learning? When? By how much?
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Gains in active learning

Performance measure:
- Let f* minimize R(f) =P (Y # f(X)).
- Let f < classifier returned after querying n labels.

~

How small can R(f) — R(f*) be in terms of n?

Most results are in parametric settings (e.g. VC dim. < c0):
[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

A-L rates = \/R(f*)/n + e V", vs P-L rates = \/R(f*)/n+ 1/n
R(f*) > 0: both rates are = 1/y/n (no significant gain).

But R(f*) is often > 0 (imperfect world):
noisy images or speech, adversarial spam, variable drug response ...

Are there no gains in these practical settings?



We want to understand which gains are possible over passive
learning under general conditions, and for reasonable procedures.
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General Conditions:

Let n(z) =P (Y = 1| x), and note that f* =1{n > 1/2}.
So R(f*) depends on how 7 behaves.

A natural direction:
Parametrize 1) on a continuum from easy to hard problems.

Capturing such continuum:

(i). Classification is hard if 7(x) is typically ~ 1/2, else it's easy!
How typical —> existing noise conditions (e.g. Tsybakov,
Massart)

(ii). Combine with regularity or complexity conditions:
smoothness of 7 or class-boundary, complexity of hypothesis class ...



Initial insights ... different regularity conditions
[Hanneke 09], [Koltchinskii 10], [Castro-Nowak 08], [Minsker 12]



[Hanneke 09], [Koltchinskii 10] (ERM + low metric entropy):
Show considerable gains over passive learning even with label noise!J

However:

e Assume bounded disagreement coefficient:
Mostly known for toy distributions (U (interval), U(sphere)).

¢ Procedures are not implementable (search over infinite F).
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Show considerable gains over passive learning even with label noise!
Implementable, no conditions on Disagreement Coefficient,
Adaptive!

However:
Needs quite restrictive technical conditions on Py y.



Can reasonable A-L procedures (implementable + adaptive)
attain considerable gains over P-L for general distributions?



Some of our recent results:

We consider various regularity conditions on n = E [Y'|X]:

e 1) is a smooth function
with A. Carpentier and S.Kpotufe, COLT 2017

e 1) defines a smooth decision-boundary
with S.Kpotufe and A. Carpentier, ALT 2018
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1 is @ smooth function

Setup:
e n(x) = E[Y|z] has Holder smoothness «
(e.g. all derivatives up to order « are bounded)
Example: « =1 = 7 is Lipschitz.

e Tsybakov noise condition: ¢, 8 > 0 such that V7 > 0:

1
Px (x: ’n(x) — 2’ < T) <er?,
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«, B capture continuum between easy and hard problems

[Audibert-Tsybakov 07]

Passive rates : n_w“)/(%%)

The above implies:
e Slow rates of Q(n~'/9) for small a, 3.
e Fast rates of o(1/n): for large «, 5.



We'll see that: interaction between «, § and d control A-L rates
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Theorem: o« < 1, aff < d
There exists an active strategy f such that:

~ a(B+1)

R(fn) — R(f*) Sn 2a+d-af (rate is tight)

Passive rate: replace d — a5 by d [AT07]

For o« > 1 Minsker conjectures a transition:

~ a(B+1)

R(fn) — R(f7) Sn 2e¥d=s

Open: Unrestricted Px? General n? af =d? a > 17



We'll present both new statistical and algorithmic results:
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Statistical contributions

Significantly milder conditions, new rate regimes:

e Recover all rates without self-similarity conditions on 7.

e Px uniform (new transitions):
e No (exponential) dependence on d when min{«, 1} = 1.
e Verify rate transition for o > 1:

N a(B+1)

For 6=1: infsupE[R(f,)] — R(f*) 2 n™ 2o+a-¢
fnom

e Unrestricted Px: different minimax rate

. _a(B+1) i __a(B+1)
Active : © | n~ 2a+d | vs. Passive: © | n 2a+dtaB
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Algorithmic contribution

Naive strategy: suppose we have a Confidence Band on 7

CBonnp

Request new label at x5 but not at z1, x3

Optimal CBs require strong conditions on 7 (e.g. self-similarity)

New generic adaptation strategy for nested classes {¥(a)}a>0 J

Aggregate Y estimates from non-adaptive subroutines (over a *).
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Non-adaptive Subroutine

Suppose we know 7 is a-smooth (a < 1)

e We know 7 changes on C by at most r*

Cell g
e Query t labels at ¢ and estimate n(z¢):
_ ] @
whp. [i(ee) = nxe) S /5
-

— VreC, filwe)—n@) S /141

. Let t ~r 2, we can safely label C' if

1i(zc) —1/2] 2 2r°|

Otherwise partition C' and repeat over smaller regions.
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Implement previous intuition over
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e Abstention region contained in
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Non-adaptive Subroutine

Suppose we know 7 is a-smooth (a < 1)

Implement previous intuition over
hierarchical partition of [0, 1]¢.

Final output given budget n: Abstention region
e Correctly labeled subset of [0, 1]¢ ¥
e Abstention region contained in

{z:[n(z) —1/2] < Aqp(n)}-

A, g(n) is “optimal” under
different Px regimes.

Labeled regions

M Class 1 M Class 0

Case a > 1:
Same intuition, but higher order interpolation (for 7) on cells C
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e Adaptive Procedure
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Difficulty: Collected labels depend on parameters of A-L algorithm

First idea: Split budget and cross-validate over values of « ...
Cost: (optimal rate) + 1/\/n

So cannot get fast rates ...
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Adaptive Procedure (o unknown)

Key idea: 7 is o/-Holder for any o/ < «
= Subroutine(a’) returns correct labels (red or blue)

Procedure:
Aggregate labelings of Subroutine(a’) for o/ = a1 < as < ...

Abstention region
\

Labeled regions for ay Labeled regions for a: Aggregated labels

Correctness: at «; = « labeling has optimal error
At o > «, we never overwrite previous labels (error remains small)

Implementation: o; € [loén logn : log n] use budget log%n Yoy
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Adaptive Procedure (o unknown)

Without self-similarity assumptions adaptive ﬁ satisfies:

Theorem (unrestricted Px )

N _a(B+1)

R(fn) — R(f*) S 2ed

Theorem (Px uniform)

R(fa) — B(f*) S 0”78 i

which are all tight rates.
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« 7 is a smooth function
with A. Carpentier and S.Kpotufe, COLT 2017

e Upper-bounds

o Non-adaptive Subroutine
e Adaptive Procedure

e Lower-bounds

e 1) defines a smooth decision-boundary
with S.Kpotufe and A. Carpentier, ALT 2018



Lower-bounds

Theorem (unrestricted Px )
For any active learner fn we have:

A _a(B+1)

Sl;pE[R(fn)] — R(f*) > Cn™ 2a+a




Lower-bounds

Theorem (unrestricted Px )

For any active learner f,, we have:

A _a(B+1)

supB[R(f)] = R(f*) 2 O~ 5

Theorem (Px uniform and a > 1, f=1)

For any active learner f, we have:

A a(B+1)

SupE[R(f,)] — R(f*) > Cn~ v
n

This confirms a transition in the rate (at least for 5 = 1).
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7 changes linearly in 1 direction,
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Lower-bound construction for Px uniform, o > 1, =1

Remember difference in rates:
a(B+1)

e} S 1: n_ 2a+d—af
_ a(B+1)
a>1:n 2+d=5

Z
Hard case for o > 1, 8 = 1: ‘g,'::::::;':;.},’/
7 changes linearly in 1 direction, s directons

but oscillates in d — 1 directions

77 directions

...d — 3 now acts as the effective degrees of freedom
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Summary

e We recover rates in A-L under more natural assumptions
e Different transitions: « > 1, (a A 1) = d, unrestricted Px.

e Introduced a generic adaptation framework for nested classes.

Extension: our framework yields the first adaptive procedure
in the smooth boundary setting of Castro and Nowak (2008)



Our recent result:

We consider various regularity conditions on n = E [Y'|X]:
e 1) is a smooth function
with A. Carpentier and S. Kpotufe, COLT 2017

o 1) defines a smooth decision-boundary
with S.Kpotufe and A. Carpentier, ALT 2018
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n defines a smooth decision-boundary

T4 y= 1
/\/\4’”1
y=0
I, y Ld—1

e D= {x:n(x)=1/2} is given by a-Holder function g.
e Noise condition: |(z) — 1/2| ~ dist(z, D)*" !, k > 1.

Problem gets easier as k — 1, a — 00.
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Previous work [Castro, Nowak 07], Px = U[0, 1]

If we know «, k, then:

R(f) — R(f*) Sn” 2G0T (rate is tight)

Passive rate: Replace x — 1 with xk — 1/2.

Can these gains be achieved by an adaptive procedure?



Existing adaptive results:

Dimension d = 1, D = threshold on the line

Binary search strategies are adaptive to « ... (fixed o = 00)
[Hanneke, 09], [Ramdas, Singh 13], [Yan, Chaudhuri, Javidi, 16]
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Intuition:
If D is a-smooth, then it's a’-smooth for o/ < a!

So use the same strategy as before:

Aggregate estimates from non-adaptive subroutine for o *

Main difficulty:

e Subroutine must adapt to  in R ...
e Subroutine must estimate boundary optimally...

e Use o to abstain from labeling when unsure...

Our subroutine builds on a known reduction to line search



T4 y= 1
/\/\4’%1
y=0
Iy, y Ld—1

We get the first fully adaptive and optimal A-L for the setting!




In summary:

Further gains in A-L emerge as we parametrize from easy to hard.



In summary:

Further gains in A-L emerge as we parametrize from easy to hard.

Next directions:
o Better aggregation?

e Draw links with Contextual Bandits, Nonlinear Optimization.

Thanks!



