
Short introduction Weak wellposedness result and propagation of chaos Density estimates Alternative approach

Conditional McKean Lagrangian Models

Jean-François Jabir

HSE, Moscow.

Universität Potsdam, February 2018



Short introduction Weak wellposedness result and propagation of chaos Density estimates Alternative approach

General problems:
◦ Wellposedness (existence and uniqueness) of a weak solution and weak propagation
of chaos for a stochastic di�erential equation of the form:

Xt = X0 +

∫ t

0

Us ds,

Ut = U0 +

∫ t

0

E [b(Us) |Xs ] ds + σ dWt ,

(1)

where (X0,U0) ∼ µ0 for µ0 a given probability measure on R2d , (Wt ; t ≥ 0) is a
standard Rd -Brownian motion and b : Rd → Rd is a bounded Borel function (Bossy, J.
and Talay, 2011).

◦ Density estimates for a toy version of Langevin McKean-Vlasov model
X̂t = X0 +

∫ t

0

Ûs ds,

Ût = U0 +

∫ t

0

E
[
β(X̂s , Ûs ;X s ,Us)] ds + σWt ,

(X t ,Ut ; t ≥ 0) independent copy of (X̂t , Ût ; t ≥ 0),

and (1), and application for the wellposedness problem of a strong solution to each
SDEs (J. and Menozzi, work in progress 2018).
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Overview:

I . Short introduction on Lagrangian Stochastic Models for the simulation of
turbulent �ows.

II . Weak wellposedness result and weak propagation of chaos.

III . Density estimates.

VI . An alternative approach.
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The Lagrangian approach.

Lagrangian Stochastic models (LSMs) for the simulation of turbulent �ows:
Introduced in the eighties, LSMs aim to provide a physically relevant and
computationally feasible stochastic model describing the evolution of a generic �uid
particle issued from a turbulent �ow (see e.g. Minier and Peirano 2001, Pope 2003).
Generic model:

dXt =Ut dt, particle position,

dUt =b(t,Xt ,Ut) dt + σ(t,Xt ,Ut) dWt , particle velocity,

where the coe�cients b et σ model a particular type of turbulence behavior.

Link with macroscopic �ow: For ρ(t, x , u) the density function of (Xt ,Ut),

ρ(t, x) :=

∫
Rd
ρ(t, x , u) du ↔ %(t, x), mass density,

E[Ut | Xt = x]↔ 〈U〉(t, x)↔
∫
v%(t, x , v) dv

%(t, x)
, mean velocity,

E[|Ut − 〈U〉(t, x)|2 | Xt = x]↔ k(t, x) = 〈(U − 〈U〉2〉(t, x), mean kinetic energy.

And more generally,

E [g(Ut) | Xt = x] =

∫
Rd g(u)ρ(t, x , u) du∫

Rd ρ(t, x , u) du
↔ 〈g(U)〉(t, x).
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Applications.

Lagrangian modeling for turbulent �ows and their simulation by means of numerical
probabilities has been applied to various complex turbulence �ows:

• Wall bounded �ows (Dreeben and Pope 1997);

• Turbulent-reactive �ows (Minier�Peirano 2001);

• Filtering of meteorological datas (Baehr 2008);

• Stochastic methods for downscaling in Computational Fluid Dynamics
(Bernardin et al. 2010, Bossy et al. 2016, 2018). Join projects INRIA, ADEME

and LMD (2004�2011); WindPos project INRIA France and INRIA Chile (2012�2015);
MERIC (from 2016 to 2019); ....

• Particle deposition in turbulent pipe �ows (Chibarro and Minier et al. 2008).

For a (partial) account of the applications, mathematical and computational problems
related to LSMs, see Bernardin et al. 2010, Bossy et al 2017
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Mathematical problems

Example of a Lagrangian stochastic model (Pope 1994, 2003):

dXt = Utdt,

dUt =

(
−
1

%
∇xP(t,Xt) + G(t,Xt) (E[Ut | Xt ]− Ut)

)
dt + C(t,Xt)dWt ,

where ∇xP models external/internal forces and where the coe�cients C , G are
physical quantities either positive constants or non-negative scalar functions of the
conditional moments of the velocity:

G(t, x) = G(t, x , 〈U〉(t, x), k(t, x))

= G(t, x ,E[Ut |Xt = x],E[|Ut − E[Ut |Xt = x]|2 |Xt = x])

C(t, x) = C(t, x , 〈U〉(t, x), k(t, x))

= C(t, x ,E[Ut |Xt = x],E[|Ut − E[Ut |Xt = x]|2 |Xt = x])

For instance:

G(t, x) = c0k
1/2(t, x), C(t, x) = c1k

3/4(t, x), c0, c1 > 0.
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Mathematical problems

Several di�culties:

◦ Due to the presence of conditional expectations, LSMs are described by a class of
singular Stochastic Di�erential Equations ⇒ Problem of wellposedness of the models;

◦ In practice, simulations of LSMs rely on particle approximations, Euler schemes and
Monte-Carlo methods ⇒ Justify the approximations used in practice;

◦ Modeling of boundary conditions (wall bounded �ows, stochastic down-scaling
methods) ⇒ Justify/Improve some particular modeling in physics with suitable
mathematical tools;

◦ Justi�cation of physical constraints: For most physical system, we have to take into
account the incompressibility constraint:

Law(Xt) = uniform, t ≥ 0,

and the (mean) divergence free constraint:

∇x · 〈U〉(t, x) (= ∇x · E[Ut |Xt = x]) , t ≥ 0, x ∈ Rd ,

these constraints being modeled through ∇xP ⇒ Adding these constraints leads to
solve a system of SDEs-PDEs or to solve a particular type of di�usion processes with
conditioned distribution.
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Wellposedness problem

A simpli�ed LSM: 
Xt = X0 +

∫ t

0

Us ds,

Ut = U0 +

∫ t

0

E [b(Us) |Xs ] ds + σWt ,

where
• E

[
|X0|+ |U0|2

]
< +∞ and (X0,U0) ∼ µ0 admits a Lebesgue density ρ0,

• σ 6= 0,
• b : Rd → Rd is a bounded Borel measurable function.

Main di�culties:

◦ Di�usion component partially degenerated;

◦ Nonlinearities of McKean-Vlasov type in conditional form as E [b(Ut) |Xt ] rewrites as

B [x ; ρ(t)] =



∫
Rd

b(v)ρ(t, x , v) dv∫
Rd
ρ(t, x , v) dv

when

∫
Rd
ρ(t, x , v) dv 6= 0,

0 otherwise.

whenever Law(Xt ,Ut) admits a density function ρ(t).
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McKean-Vlasov models: (McKean 66, 67)

(∗)


dZt = B[Zt ;µ(t)] dt + A[Zt ;µ(t)] dWt t ≥ 0,

Law(Zt) = µ(t),

Z0 ∼ µ0 given in P(Rd ),

where P(Rd ) = {set of probability measures on Rd} and

B : Rd × P(Rd )→ Rd , A : Rd × P(Rd )→ Rd×d

are given functions.

Compared to classical SDEs, the parameters B and A de�ning the evolution of
(Zt ; t ≥ 0) depend on the time marginal distributions of (µ(t); t ≥ 0) of the solution
itself.
Motivation: Probabilistic interpretation of nonlinear pdes arising in Physics.
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A further important aspect related to (∗) is its link with stochastic particle system in
mean �eld interaction and the theory of propagation of chaos.

General idea: Consider a system of N particles, {(Z i,N
t ; t ≥ 0), 1 ≤ i ≤ N}, each of

them satisfying
Z i,N
t = Z i

0 +

∫ t

0

B[Z i,N
s ;µNs ] ds +

∫ t

0

A[Z i,N
s ;µNs ] dW

i
s , t ≥ 0,

µNt (dx) :=
1

N

N∑
j=1

δ{Z j,N
t ∈ dx} for δ, the Dirac measure,

where (Z i
0
, (W i

t ; t ≥ 0)) is a family of independent copies of (Z0, (Wt ; t ≥ 0)).

Due to the interaction between particles, the initial chaos (independency) issued from
the initial position and Brownian e�ects disappears with time. Nevertheless as the
number of particle N grows to in�nity, each particle tends to behave independently
from the others according to a common distribution.
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Propagation of chaos: {(Z i,N
t ; t ≥ 0), 1 ≤ i ≤ N} is said to propagate chaos

towards the McKean-Vlasov dynamic (Zt ; t ≥ 0) i�, for all k,

Law(Z1,N ,Z2,N , · · · ,Z k,N)→ Law(Z)⊗, · · · ⊗ Law(Z)︸ ︷︷ ︸
k times

,

Equivalently, whenever the particle system is symmetric:

Law(Zσ(1),N ,Zσ(2),N , · · · ,Zσ(N),N) = Law(Z1,N ,Z2,N , · · · ,ZN,N), σ ∈ P(N)

then the propagation of chaos property is equivalent to:

1

N

N∑
i=1

δ{Z i,N} converges weakly towards Law(Z),

namely, for all F ∈ Cb(C([0,T ];Rd );R), 0 < T <∞,

1

N

N∑
i=1

F (Z i,N)→ E [F (Z)] .
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Some McKean-Vlasov models with singular (local) nonlinearity.
• A. Sznitman (1986): Burgers equation

Zt = Z0 + 2c

∫ t

0

ρ(s,Zs)ds + σWt , ρ(t, z)dz = P (Zt ∈ dz) .

• Méléard and Roelly-Coppoletta (1987):

Zt = Z0 +

∫
Rd

F (Zs , ρ(s,Zs)) ds +Wt ,

where F : Rd × R→ Rd is a bounded function satisfying some Lipschitz condition.
• A. Dermoune (2001): Viscous pressureless gas equation

Zt = Z0 +

∫ t

0

E [b(Z0) | Zs ] ds + σWt ,

for b : Rd → Rd bounded.
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Coming back on the existence and uniqueness of a solution, up to an arbitrary �nite
time T > 0, to 

Xt = X0 +

∫ t

0

Us ds,

Ut = U0 +

∫ t

0

E [b(Us) |Xs ] ds + σWt , 0 ≤ t ≤ T .

◦ Heuristic particle approximation:

X i,N
t = X0 +

∫ t

0

U i,N
s ds,

Ut = U0 +

∫ t

0

1

N

N∑
j=1

b(U j,N
s )11{X j,N

s =X
i,N
s }

1

N

N∑
j=1

11{X j,N
s =X

i,N
s }

ds + σW i
t , 0 ≤ t ≤ T ,

where ((X i
0
,U i

0
), (W i

t ; 0 ≤ t ≤ T ))
D
= ((X0,U0), (Wt ; 0 ≤ t ≤ T )) independent.



Short introduction Weak wellposedness result and propagation of chaos Density estimates Alternative approach

Coming back on the existence and uniqueness of a solution, up to an arbitrary �nite
time T > 0, to 

Xt = X0 +

∫ t

0

Us ds,

Ut = U0 +

∫ t

0

E [b(Us) |Xs ] ds + σWt , 0 ≤ t ≤ T .

◦ Smoothed interaction kernel:
X i,ε,N
t = X i

0 +

∫ t

0

U i,ε,N
s ds, (1 ≤ i ≤ N),

U i,ε,N
t = U i

0 +

∫ t

0

∑N
j=1

b(U j,ε,N
s )φε(X

j,ε,N
s − X i,ε,N

s )∑N
j=1

(
φε(X

j,ε,N
s − X i,ε,N

s ) + ε
) ds + σW i

t ,

where {φε}ε>0 is a family of non-negative smooth probability density function
approximated the Dirac measure.
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Theorem (Bossy, J. and Talay 2011)

For �xed ε > 0, as N →∞, for all i ≥ 1, (X i,ε,N ,U i,ε,N) converges weakly towards
(X ε,Uε). In addition, we have a propagation of chaos result: For all
F ∈ Cb(C([0,T ];R2d )),

P− a.s. lim
N→+∞

1

N

N∑
i=1

F (X i,ε,N ,U i,ε,N) = E [F (X ε,Uε)] .

Next, for the limit ε→ 0,

Theorem (Bossy, J. and Talay 2011)

As ε decreases to 0, (X εt ,U
ε
t ; t ∈ [0,T ]) converges to (Xt ,Ut ; t ∈ [0,T ]) which is

unique in the weak sense. Moreover, for all 0 ≤ t ≤ T , (Xt ,Ut) admits a Lebesgue
density ρ(t) and, for all f ∈ Cb(R2d ),

∀ t ∈ [0,T ], lim
ε→0+

ρε(t) = ρ(t), in L1(R2d ).

Combining these results, we justify the wellposedness of a weak solution to the
simpli�ed LSM and the particle approximations: for all f ∈ Cb(R2d ),

lim
ε→0+

lim
N→+∞

1

N

N∑
i=1

f (X i,ε,N
t ,U i,ε,N

t ) = E [f (Xt ,Ut)] .
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Density estimate and strong wellposedness result

J. and Menozzi (work in progress, 2018)

Aim: Density estimate and strong uniqueness property for the simpli�ed LSM:
Xt = X0 +

∫ t

0

Us ds,

Ut = U0 +

∫ t

0

E [b(Us) |Xs ] ds + σWt , 0 ≤ t ≤ T .

Toy model: 
X̂t = X0 +

∫ t

0

Ûs ds,

Ût = U0 +

∫ t

0

(
E
[
β(X̂s , Ûs ;X s ,Us)]

)
ds + σWt ,

(X t ,Ut ; t ≥ 0) independent copy of (X̂t , Ût ; t ≥ 0),

for β : R2d × R2d → Rd a Borel function, symmetric (β(x , u; y , v) = β(y , v ; x , u)) and
bounded.
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Density estimate and strong wellposedness result

J. and Menozzi (work in progress, 2018)
Aim: Density estimate and strong uniqueness property for the simpli�ed LSM:

Xt = X0 +

∫ t

0

Us ds,

Ut = U0 +

∫ t

0

B[Xs ; ρ(s)] ds + σWt ,

where

B [x ; ρ(t)] =



∫
Rd

b(v)ρ(t, x , v) dv∫
Rd
ρ(t, x , v) dv

when

∫
Rd
ρ(t, x , v) dv 6= 0,

0 otherwise.

Toy model:
X̂t = X0 +

∫ t

0

Ûs ds,

Ût = U0 +

∫ t

0

(∫
β(X̂s , Ûs ; y , v) ρ̂(s, y , v) dy dv

)
ds + σWt ,

ρ(t) density function of Law(X̂t , Ût),

for β : R2d × R2d → Rd a Borel function, symmetric (β(x , u; y , v) = β(y , v ; x , u)) and
bounded.
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Some classical results on SDEs with singular coe�cients: Existence and
uniqueness of a strong solution{

dXt = b(t,Xt) dt + σ(t,Xt) dWt ,

X0 = ξ ∼ µ0,

with irregular coe�cients assuming σ is not degenerated: for some c > 0

ξ · σσ∗ξ ≥ c|ξ|2, ∀ ξ ∈ Rd .

◦ A. Yu Veretennikov 1981: b bounded, σ bounded, continuous and in
L2d+2

loc ((0,∞),W 1,2d+2

loc (Rd )).

◦ N. V. Krylov and M. Röckner 2002: σ(t, x) = σId and
∫ T
0
‖b(t, x)‖q

Lp(Rd )
dt <∞

with p ≥ 2, q > 2 such that 2/q + d/p < 1.

◦ X. Zhang 2016: Generalization to the case σ ∈ Lqloc ((0,∞),W 1,p(Rd )).

◦ N. Champagnat and P.-E. Jabin 2018 (To appear): Drop the non-degeneracy
condition but require b, σ ∈ Lqloc ((0,∞),W 1,p(Rd )), 1 ≤ p ≤ ∞, and some Sobolev
regularity assumption on Law(Xt).
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The case of Langevin models with singular coe�cients: Existence and uniqueness
of a strong solution 

dXt = Ut dt,

dUt = b(t,Xt ,Ut) dt + σ(t,Xt ,Ut) dWt ,

(X0,U0) = (ξ1, ξ2) ∼ µ0,

with irregular coe�cients and σ non-degenerated.

◦ Chaudru de Raynal 2017: σ Lipschitz, b bounded and Hölder continuous in the sense

|σ(t, x , u)− σ(t, y , v)| ≤ C (|u − v |α1 + |x − y |α2 ) , ∀(x , u), (y , v) ∈ R2d ,

for 0 < α1 < 1 and 2/3 < α2 < 1.

◦ Fedrezzi, Flandoli, Priola and Voyelle 2017: σ(t, x , u) = σId , b = b(x , u) with
‖Dαx b‖Lp(Rd×Rd ) <∞ with p > 6d and 2/3 < α < 1.

◦ Zhang 2017 (preprint): σ(t, x , u) = σId , b = b(x , u) with ‖D2/3
x b‖Lp(Rd×Rd ) <∞

with p > 2(2d + 1).
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Tools: Study of the related (kinetic) Fokker-Planck equation∂tρ+ u · ∇xρ+∇u · (ρB)−
1

2
4uρ = 0 on (0,T )× R2d ,

ρ(t = 0) = ρ0 onR2d .

Preliminary: Bouchut 2002: If f , g ∈ L2((−∞,∞)× R2d ) with
∇uf ∈ L2((−∞,∞)× R2d ) satisfy

∂t f + u · ∇x f −
1

2
4uf = g on (−∞,∞)× R2d ,

then
‖∂t f + u · ∇x f ‖L2 + ‖4uf ‖L2 + ‖D2/3

x f ‖L2 <∞.
For the extension to Wα,p estimate for 1 < p <∞: use the mild formulation of the
(kinetic) Fokker-Planck:

ρ(t) = S∗t (µ0) +

∫ t

0

(∇vS)
∗
t−s(ρ(s)B) ds, 0 ≤ t ≤ T . (2)

for

S?t (f )(x , u) =

∫
Rd×Rd

f (y , v)GAt (x + tu − y , u − v) dy dv

where GAt is the law of the Gaussian vector (
∫ t
0
Ws ds,Wt) which is given by

GAt (x , u) =

(√
3

πt2

)d

exp

({
−
6|x |2

t3
+

6x · u
t2
−

2|u|2

t

})
.
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For the toy model: De�ne the weight

ω̂(x , u) = (1+ |x |2)λ1/2(1+ |u|2)λ2/2, λ1, λ2 > 0

(the role of the weight ω̂ is to compensate the lake of integrability of β).

Theorem (Direct smoothing e�ects along the u-variable and the x-variable)

Assume that λ1, λ2 > d + 1. Then, for all 1 < p <∞,

‖ω̂1/pDk+α
u ρ0‖Lp(R2d ) <∞⇒ max

0≤t≤T

(
t(α−γ1)/2‖ω̂1/pDα+γ1u ρ̂(t)‖Lp(R2d )

)
<∞,

for 0 ≤ γ1 < 2,

‖ω̂1/pDα
′

x ρ0‖Lp(R2d ) <∞⇒ max
0≤t≤T

(
t3(α

′−γ2)/2‖ω̂1/pDα
′+γ2

x ρ̂(t)‖Lp(R2d )
)
<∞,

for 0 ≤ γ2 < 2/3.

Note: When p = 2, 0 ≤ γ1 ≤ 2 and 0 ≤ γ2 ≤ 2/3.

Since β is symmetric,

Dα
′

x

∫
β(x , u; y , v)ρ̂(t, y , v) dy dy =

∫
β(x , u; y , v)Dα

′
y ρ̂(t, y , v) dy dy
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Strong well-posedness results for the toy model:

Corollary

Assume that one of the following assumption hold:
(i)

‖ω̂1/p
(
Dαu ρ

0
)
‖Lp(Rd×Rd ) + ‖ω̂

1/p
(
Dα

′
x ρ0

)
‖Lp(Rd×Rd ) <∞

for some 1 < p <∞ and α, α′ > 0 so that α > d/p − 2/3 and α′ > d/p − 2;

(ii) ω̂1/p(Dα
′

x ρ0) ∈ Lp(Rd × Rd ) for α′ > 0 and p > 6d or p > 2(2d + 1).

(iii) ω̂1/p(Dαu ρ
0), ω̂1/p(Dα

′
x ρ0) ∈ Lp(Rd × Rd ) for p > d , α, α′ > d/p − 1/3.

Then there exits a unique strong solution to the toy model (X̂t , Ût ; 0 ≤ t ≤ T ).

(i) allows a direct application, using the preceding estimate on Dαu ρ̂(t), D
α′
x ρ̂(t) and

Sobolev embedding, of Chaudru de Raynal 2017's criterion for the wellposedness of a
strong solution.

(ii) is related to Fredezzi et al. 2017 and Zhang 2017 results.

(iii) take into account the McKean-Vlasov aspect of the model.
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For the extension to the simpli�ed LSM, the main di�culty lies in controlling the
denominator in the conditional expectation:∫

b(v)ρ(t, x , v) dv∫
ρ(t, x , v) dv

Theorem (Lower and upper bounds for general Langevin dynamics)

Let p(t) denotes the density function of Law(Yt ,Vt) where

Yt = X0 +

∫ t

0

Vs ds, Vt = U0 +

∫ t

0

bs ds + σWt

for (bt ; t ≥ 0) Ft -adapted uniformly bounded process.
For 0 < T <∞, there exist C ≥ 1 and c ∈ (0, 1] depending on T , d , σ and ‖b‖L∞
such that, for all t ∈ [0,T ], (x , u) ∈ R2d :

C−1
∫
R2d

GcAt

(
x − (x0 + tu0), u − u0

)
ρ0(x0, u0)dx0du0

≤ p(t, x , u) ≤ C

∫
R2d

GcAt

(
x − (x0 + tu0), u − u0

)
ρ0(x0, y0)dx0dy0,

where GcAt the law of the Gaussian vector c−1/2(
∫ t
0
Ws ds,Wt).
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Lemma (Global lower bound for the simpli�ed LSM)

Assume that
(∗ ∗ ∗) ρ0(x , u) ≥

κ

(1+ |x |2)γ+d/2
g0(u), κ, γ > 0.

Then there exists 0 < C(κ,T , d) (constant depending only on κ,T and d) such that∫
Rd
ρ(t, x , v) dv ≥

C(κ,T , d)

(1+ |x |2)γ+d/2
, ∀(t, x) ∈ [0,T ]× Rd .
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De�ne

ω(x , u) =
(1+ |u|2)λ2/2

(1+ |x |2)λ1/2
,

for some λ1, λ2 > 0.

Theorem

In addition to (∗ ∗ ∗), assume that ρ0 ∈ L∞, λ1, λ2 > d + 1 and that∫
(1+ |u|2)λ2 |ρ0(x , u)|p dx du <∞.

Then, for all 1 < p <∞,

‖ω1/pDk+α
u ρ0‖Lp(R2d ) <∞⇒ max

0≤t≤T

(
t(α−γ1)/2‖ω1/pDα+γ1u ρ(t)‖Lp(R2d )

)
<∞,

for 0 ≤ γ1 < 2,

‖ω1/pDα
′

x ρ0‖Lp(R2d ) <∞⇒ max
0≤t≤T

(
t3(α

′−γ2)/2‖ω1/pDα
′+γ2

x ρ(t)‖Lp(R2d )
)
<∞,

for 0 ≤ γ2 < 2/3.
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Strong wellposedness result

On the wellposedness of a strong solution to the simpli�ed LSM: Since

Dα
′

x B[x ; ρ(t)] ∼
∫
b(v)Dα

′
x ρ(t, x , v) dv∫

ρ(t, x , v) dv
−
∫
Dα

′
x ρ(t, x , v) dv∫
ρ(t, x , v) dv

∫
b(v)ρ(t, x , v) dv∫
ρ(t, x , v) dv

we cannot expect global Dα
′

x estimate on B and our preceding estimates on

‖ω1/pDαu ρ(t)‖Lp(R2d ) and ‖ω1/pDα
′

x ρ(t)‖Lp(R2d ) only enable to grant

Corollary

If ω1/p(Dαu ρ
0)ω1/p(Dα

′
x ρ0) ∈ Lp(Rd × Rd ) for p > d , α, α′ > d/p − 1/3 then there

exits a unique strong solution to (X̂t , Ût ; 0 ≤ t ≤ T ).

More general results require to extend the results of Chaudru de Raynal 2017, Fredezzi
et al. 2017 and Zhang 2017 results to a local framework.
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On the wellposedness problem of a LSM with singular di�usion

Bossy and J. (work in progress, 2018): Modi�ed LSM with an additional viscosity in
the position dynamic

(∗ ∗ ∗∗)


Xt = X0 +

∫ t

0

b(Xs ,Ys)ds +

∫ t

0

σ(Xs)dBs ,

Yt = Y0 +

∫ t

0

E[`(Ys)|Xs ]ds +

∫ t

0

E[γ(Ys)|Xs ]dWs .

Theorem

Assume that
(H0)

∫
Rd×Rd (|x |2 + |y |2)ρ0(x , y) dx dy <∞ and ρX (0, x) =

∫
Rd ρ

0(x , y)dy is in

L1(Rd ) ∩ Lp(Rd ) for some p ≥ 2d + 2. Moreover, for all R > 0, for all x ∈ B(0,R),
there exists a constant mR > 0 such that ρX (0, x) ≥ mR .
(H1) b and ` are bounded Lipschitz continuous functions.
(H2) σ and γ are in C2(Rd ) with bounded derivatives up to second order.
(H3) Strong ellipticity is assumed for σ: their exist a∗, a∗ > 0, α∗, α∗ > 0 such that,
for all (x , y) ∈ Rd × Rd ,

a∗|ξ|2 < ξσ(y)σ(y)∗ξ < a∗|ξ|2, ∀ ξ ∈ Rd ,

α∗|ξ|2 < ξγ(y)γ(y)∗ξ < α∗|ξ|2, ∀ ξ ∈ Rd .

Then there exists a unique strong solution to (∗ ∗ ∗∗).
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