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General problems:
o Wellposedness (existence and uniqueness) of a weak solution and weak propagation
of chaos for a stochastic differential equation of the form:

t
xt:x0+/ Us ds,
0
t
Ut:u0+/ E [b(Us) | Xs] ds + o dWi,
0

where (Xo, Ug) ~ o for pg a given probability measure on R29, (W;; t > 0) is a
standard R?-Brownian motion and b : R? — R is a bounded Borel function (Bossy, J.
and Talay, 2011).

o Density estimates for a toy version of Langevin McKean-Vlasov model
o~ t o~
Xt:XOJr/ Us ds,
0
o~ ti ~ —~ — J—
O = Uo+ [ E[B(%, Osi X Uil ds + o Wi,
0

(X:,Uy; t > 0)independent copy of (X:, Ur; t > 0),

and (1), and application for the wellposedness problem of a strong solution to each
SDEs (J. and Menozzi, work in progress 2018).



Overview:

I. Short introduction on Lagrangian Stochastic Models for the simulation of
turbulent flows.

Il. Weak wellposedness result and weak propagation of chaos.

/1]. Density estimates.

VIi. An alternative approach.



Short introduction

The Lagrangian approach.

Lagrangian Stochastic models (LSMs) for the simulation of turbulent flows:
Introduced in the eighties, LSMs aim to provide a physically relevant and
computationally feasible stochastic model describing the evolution of a generic fluid
particle issued from a turbulent flow (see e.g. Minier and Peirano 2001, Pope 2003).
Generic model:

dX¢ =U; dt, particle position,
dU; =b(t, X¢, Ut) dt + o(t, Xz, Ut) dW;, particle velocity,

where the coefficients b et o model a particular type of turbulence behavior.
Link with macroscopic flow: For p(t, x, u) the density function of (X, Ut),

p(t,x) = / p(t, x, u) du <> o(t, x), mass density,
R

E[Ut | Xe = x] ¢ (U)(t, x) < M
o(t,x)

E[|Ur — (U)(t,x)[2 | Xe = x] & k(t,x) = (U — (U)?)(t, x), mean kinetic energy.

, mean velocity,

And more generally,

Jra g(u)p(t, x, u) du

Elg(U) | Xe = x] = Tap(trud
ra P(t, X, u) du

< (g(U)(t,x).




Short introduction

Applications.

Lagrangian modeling for turbulent flows and their simulation by means of numerical
probabilities has been applied to various complex turbulence flows:

e Wall bounded flows (Dreeben and Pope 1997);
e Turbulent-reactive flows (Minier—Peirano 2001);
e Filtering of meteorological datas (Baehr 2008);

e Stochastic methods for downscaling in Computational Fluid Dynamics

(Bernardin et al. 2010, Bossy et al. 2016, 2018). Join projects INRIA, ADEME
and LMD (2004-2011); WindPos project INRIA France and INRIA Chile (2012-2015);
MERIC (from 2016 to 2019); ...

e Particle deposition in turbulent pipe flows (Chibarro and Minier et al. 2008).

For a (partial) account of the applications, mathematical and computational problems
related to LSMs, see Bernardin et al. 2010, Bossy et al 2017



Short introduction
Mathematical proble
Example of a Lagrangian stochastic model (Pope 1994, 2003):

dX; = Utdt,

1
dU; = (—EVXP(t,Xt) + G(t, Xt) (E[U: | Xe] — Ut)) dt + C(t, X¢)dWs,

where VP models external/internal forces and where the coefficients C, G are
physical quantities either positive constants or non-negative scalar functions of the
conditional moments of the velocity:

G(t,x) = G(t,x, (U)(t,x), k(t,x))
= G(t,X,E[Uf | Xt = X],]E[‘Ut - ]E[Ut |Xf = X]|2 ‘Xt = X])

C(t,x) = C(t,x, (U)(t,x), k(t,x))
= C(f,X,E[Ut | Xt = X],E[‘Ut — ]E[Ut | Xt = X]l2 ‘Xt = X])
For instance:

G(t,x) = qok¥?(t,x), C(t,x)= c1k®/*(t,x), co, c1 > 0.



Short introduction

Mathematical problems

Several difficulties:

o Due to the presence of conditional expectations, LSMs are described by a class of
singular Stochastic Differential Equations = Problem of wellposedness of the models;

o In practice, simulations of LSMs rely on particle approximations, Euler schemes and
Monte-Carlo methods = Justify the approximations used in practice;

o Modeling of boundary conditions (wall bounded flows, stochastic down-scaling
methods) = Justify/Improve some particular modeling in physics with suitable
mathematical tools;

o Justification of physical constraints: For most physical system, we have to take into
account the incompressibility constraint:

Law(X¢) = uniform, t > 0,
and the (mean) divergence free constraint:
Vi (U)(t,x) (= Vi E[Ue | Xe = x]), t 20, x € RY,

these constraints being modeled through VP = Adding these constraints leads to
solve a system of SDEs-PDEs or to solve a particular type of diffusion processes with
conditioned distribution.



Weak wellposedness result and propagation of chaos

Wellposedness problem

A simplified LSM:
t
xt:x0+/ Us ds,
0

t
Us = U0+/ E [b(Us) | Xs] ds + o W,
0

where

o E [|Xo| + |Uo|?] < 400 and (Xo, Up) ~ o admits a Lebesgue density p°,
e o #£0,

e b:RY — RY is a bounded Borel measurable function.

Main difficulties:
o Diffusion component partially degenerated;

o Nonlinearities of McKean-Vlasov type in conditional form as E [b(U;) | X¢] rewrites as

/]Rd b(v)p(t,x,v)dv
B[x; p(t)] = / p(t, %, v) dv
R

0 otherwise.

When/ p(t,x,v)dv #0,
RrRd

whenever Law(X¢, U;) admits a density function p(t).



Weak wellposedness result and propagation of chaos

McKean-Vlasov models: (McKean 66, 67)
dZt = B[Zt; [l(t)] dt + A[Zt; ,U,(t)] th t 2 O,
(*) Law(Zt) = M(t)r
Zp ~ pio given in P(RY),
where P(R?) = {set of probability measures on R} and
B:R? x P(RY) = R, A:RYx P(RY) — RI¥?

are given functions.

Compared to classical SDEs, the parameters B and A defining the evolution of

(Z:; t > 0) depend on the time marginal distributions of (u(t); t > 0) of the solution
itself.

Motivation: Probabilistic interpretation of nonlinear pdes arising in Physics.



Weak wellposedness result and propagation of chaos

A further important aspect related to (x) is its link with stochastic particle system in
mean field interaction and the theory of propagation of chaos.

General idea: Consider a system of N particles, {(Z"N; t > 0), 1 < i < N}, each of
them satisfying

zhN = Zo+/ Z’N,us]ds+/A[Z’N,us]dW’ >0,
1 N
oy (dx) == m ;6{2{7,\,6 o) for §, the Dirac measure,
=

where (Z§, (W/; t > 0)) is a family of independent copies of (Zo, (W;; t > 0)).

Due to the interaction between particles, the initial chaos (independency) issued from
the initial position and Brownian effects disappears with time. Nevertheless as the
number of particle N grows to infinity, each particle tends to behave independently
from the others according to a common distribution.



Weak wellposedness result and propagation of chaos

Propagation of chaos: {(Z/'"; t > 0), 1 < i < N} is said to propagate chaos
towards the McKean-Vlasov dynamic (Z;; t > 0) iff, for all k,

Law(ZUN Z2N ... ZKNY S law(Z2)®, - - © Law(Z),

k times
Equivalently, whenever the particle system is symmetric:
Law(ZCWN zo@LN Lo 7oy — aw(ZzVN, 22N ... ZNNY 5 e P(N)
then the propagation of chaos property is equivalent to:

N

1

N Z 81 zi.ny converges weakly towards Law(Z),
i=1

namely, for all F € Cp(C([0, T];RY);R), 0 < T < oo,
1 N

N > F(ZPN) - E[F(2)].

i=1



Weak wellposedness result and propagation of chaos

Some McKean-Vlasov models with singular (local) nonlinearity.
e A. Sznitman (1986): Burgers equation

ot
Zy = Zp + 2c/ o(s, Zs)ds + oWy, p(t,z)dz =P (Z: € dz).
0
e Méléard and Roelly-Coppoletta (1987):
Zi= 7o+ /d F (Ze, pls, Z2)) ds + Wk,
R

where F : RY x R — R? is a bounded function satisfying some Lipschitz condition.
e A. Dermoune (2001): Viscous pressureless gas equation

ot
Zi =2 +/ E[b(Zo) | Zs] ds + o Wk,
0

for b: RY — RY bounded.



Weak wellposedness result and propagation of chaos

Coming back on the existence and uniqueness of a solution, up to an arbitrary finite
time T >0, to

t
Xt=X0+/ Us ds,
0
t
Ut:Uo-i-/ E[b(Us) | Xs] ds + o We, 0 < £ < T.
0

o Heuristic particle approximation:

XN = X, +/ UM ds,
0
1L

N Zb(Ué-N)]l{Xé'NfX;'N}
Utzuo+/ = ds+oW/,, 0<t<T,

0 1

N 2 todnaximy
j=1

where (X5, US), (Wi; 0 < t < T)) B ((Xo, U), (Wi; 0 < t < T)) independent.



Weak wellposedness result and propagation of chaos

Coming back on the existence and uniqueness of a solution, up to an arbitrary finite
time T >0, to

t
Xt = Xo + / Us dS7
0
t
U = u0+/ E[b(Us)| Xs] ds+oWe, 0 < t < T.
0
o Smoothed interaction kernel:

t .
xjelN = x0+/ UbsNds, (1 <i<N),
0

N e, N j,e,N ie,N
1 b(U¢ be( Xz — Xs .
U”EN_U0+/ 2 ol )ds+awg,

<O( (XN — XM+ 6)

where {¢c}e>o is a family of non-negative smooth probability density function
approximated the Dirac measure.



Weak wellposedness result and propagation of chaos

Theorem (Bossy, J. and Talay 2011)

For fixed e >0, as N — oo, for all i > 1, (X"’va, U"’va) converges weakly towards
(X€, U¢). In addition, we have a propagation of chaos result: For all
F e cp(C([0, T];R?Y)),

P—a.s. li
N—

N
1 . .
=3 F(xPeN UheN) = E[F(XE, U9)].
Moo N 2 ( ) =E[F( )]

Next, for the limit ¢ — 0,

Theorem (Bossy, J. and Talay 2011)

As € decreases to 0, (X£, Us; t € [0, T]) converges to (X, Ut; t € [0, T]) which is
unique in the weak sense. Moreover, for all 0 < t < T, (X¢, U:) admits a Lebesgue
density p(t) and, for all f € Cp(R29),

vtelo, T], lim_ p°(t) = p(t), in L*(R?9).
€e—

Combining these results, we justify the wellposedness of a weak solution to the
simplified LSM and the particle approximations: for all f € Cp(R29),

N
1 . .
lim lim — E f X"E’N,U"E’N =E[f(Xt, Ur)].
! ! N;:1 (X t ) [f(Xe, Up)]

e—0t N—+o0



Density estimates

Density estimate and strong wellposedness result

J. and Menozzi (work in progress, 2018)

Aim: Density estimate and strong uniqueness property for the simplified LSM:
t
Xt:X0+/ Us ds,
0
t
Ur = U0+/ E[b(Us)| Xs] ds + oW, 0 <t < T.
0
Toy model:
o~ t o~
Xt = Xo + / Us dS,
0

o~ t — o~ o~ — J—

0e = Up +/ (E [8(%s, 0s: X, Us)]) ds + oW,
0

(X¢, Ug; t > 0)independent copy of ()A(t, Ui t >0),

for B : R29 x R24 — R9 a Borel function, symmetric (B(x, u; y, v) = B(y, v; x, u)) and
bounded.



Density estimates

Density estimate and strong wellposedness result

J. and Menozzi (work in progress, 2018)
Aim: Density estimate and strong uniqueness property for the simplified LSM:

t
Xt:X0+/ Ust,
0

t
UF:%+/“m&m@n¢+am,
0

where
/d b(v)p(t, x, v) dv
R
Bx;p(t)] = / p(t, x,v) dv when /R" pleox vy dv 70
Rd
0 otherwise.
Toy model:

o~ t/\
xt:xo+/ Us ds,
0

t
Ut:U0+/ (/6(X57U5;y7 V)ﬁ(smyiv)dydv) d5+o—Wt’
0
p(t) density function ofLaw(Xt, Ut),

for B : R29 x R29 — RY a Borel function, symmetric (3(x, u;y, v) = B(y, v; x, u)) and
bounded.



Density estimates

Some classical results on SDEs with singular coefficients: Existence and
uniqueness of a strong solution

dX: = b(f7 Xt) dt + U(t, Xt) G'Wf7
=& ~ po,

with irregular coefficients assuming o is not degenerated: for some ¢ > 0

§-00%¢ > clé]?, VE e R

o A. Yu Veretennikov 1981: b bounded, o bounded, continuous and in
L2d+2((0 o), wl-2d +2(Rd))

loc loc

o N. V. Krylov and M. Réckner 2002: o(t,x) = oly and fo Ib(t, x)||9 dt < oo

with p > 2, ¢ > 2 such that 2/q+ d/p < 1.

LP(RY)

o X. Zhang 2016: Generalization to the case o € L] ((0, 00), W1P(RY)).

o N. Champagnat and P.-E. Jabin 2018 (To appear): Drop the non-degeneracy
condition but require b,o € L] _((0,00), W:P(R?)), 1 < p < 00, and some Sobolev
regularity assumption on Law(X;).



Density estimates

The case of Langevin models with singular coefficients: Existence and uniqueness
of a strong solution

dXe = U dt,
dUt = b(t,Xt, Ut) dt + U(t,Xt, Ut) th,
(Xo, Uo) = (£1,&2) ~ po,

with irregular coefficients and o non-degenerated.

o Chaudru de Raynal 2017: o Lipschitz, b bounded and Holder continuous in the sense
|O'(t,X, U) - U(t7y7 V)I S C(IU - Vlal + ‘X - .y‘DQ) ) V(X, U), (y7 V) € R2d7
for0 <a;<land2/3<ax<l1.

o Fedrezzi, Flandoli, Priola and Voyelle 2017: o(t, x, u) = oly, b = b(x, u) with
| D2 bl p(re xrey < 00 with p>6d and 2/3 < a < 1.

o Zhang 2017 (preprint): o(t,x,u) = oly, b = b(x, u) with HD3/3bHLp(]RdXRd) < o0
with p > 2(2d + 1).



Density estimates

Tools: Study of the related (kinetic) Fokker-Planck equation

1
Otp+u-Vyp+Vy-(pB) — EAUP =0on(0, T) x R?9,
p(t =0) = p° onR?9,
Preliminary: Bouchut 2002: If f, g € L2((—o00, 00) x R2?) with
Vuf € L2((—o0, 00) x R29) satisfy
1
Otf +u-Vyf — EAUf = gon(—o0,00) X de,
then 23
10ef + - Vil 2 + [ Aufll 2 + D 3F]| 2 < oo,

For the extension to WP estimate for 1 < p < oo: use the mild formulation of the
(kinetic) Fokker-Planck:

o6) = 5 o) + [ {(V0S): (p(s)B)ds, 0 < £ < T, @)

for

SEA) = [ Fv)Galct tu— you=v)dy dv
R9 xRd

where Gy, is the law of the Gaussian vector (fot W ds, W;) which is given by

d
V3 6]x|2 6x - u 2|ul?
Gac (X, u) = (nt2 P <{7 |t3‘ tTe T ‘t| D




Density estimates

For the toy model: Define the weight
B, u) = (L4 XM+ [u?)*2/2, Ar, 22 > 0
(the role of the weight & is to compensate the lake of integrability of 3).

Theorem (Direct smoothing effects along the u-variable and the x-variable)

Assume that A1, o > d+ 1. Then, forall1 < p < oo,

~1/p ykta 0
@/ P Dftep ll 1 (r2dy < o0 = 0T

s (t(mw)ﬂ||a1/PD;’+“ﬁ(t)||LP(R2d)) <00

for0 <y <2,

~1 "0 3(a/— 2||~1 Dt =
[GY/PDe o ll1p(g2ey < 00 = o, (t (o' =72)/2||51/p Do fzp(t)”Lp(de)) < oo,

for 0 < 2 < 2/3.

Note: When p=2,0<~; <2and 0 <> <2/3.

Since [ is symmetric,

’ . !
be /B(X,u; ¥, v)p(t,y,v)dydy = /ﬁ(x,wy, v)Dy b(t,y,v)dy dy



Density estimates

Strong well-posedness results for the toy model:

Corollary

Assume that one of the following assumption hold:
()

—~ ~ ’

1527 (DF6°) llo(ge xiey + 15 (DL 6°) llp(re xre)y < 00
for some 1 < p < oo and a,a’ > 0 so that o > d/p—2/3 and &/ > d/p — 2;
(i) @Y/P(D p°) € LP(RY x RY) for o/ >0 and p > 6d or p > 2(2d + 1).
(iii) @Y/P(Dp°),BY/P(D p°) € LP(RY x RY) for p > d, a,a’ > d/p —1/3.
Then there exits a unique strong solution to the toy model (X¢, Ug; 0 <t < T).

(i) allows a direct application, using the preceding estimate on DJp(t), D' p(t) and
Sobolev embedding, of Chaudru de Raynal 2017’s criterion for the wellposedness of a
strong solution.

(i) is related to Fredezzi et al. 2017 and Zhang 2017 results.

(iii) take into account the McKean-Vlasov aspect of the model.



A osed tic h Density estimates A

For the extension to the simplified LSM, the main difficulty lies in controlling the
denominator in the conditional expectation:

J b(v)p(t,x,v)dv
S p(t,x,v)dv

Theorem (Lower and upper bounds for general Langevin dynamics)

Let p(t) denotes the density function of Law(Y, Vi) where
t t
Yt:XO-f—/ Vs ds, Vt:U0+/ bs ds + o W;
0 0

for (bt; t > 0) Fi-adapted uniformly bounded process.
For0 < T < oo, there exist C > 1 and c € (0,1] depending on T, d, o and ||b||
such that, for all t € [0, T], (x,u) € R29:

c? /2d Gea, (X — (xo + tup), u — uo)po(xo7 up ) dxo dug
R

< p(t,x,u) < C/Zd Gea, (x — (xo + tuo), u — ug) p°(x0, Yo )dxodyo,
R

where Gea, the law of the Gaussian vector c—1/2( [ Ws ds, W;).




Density estimates

Lemma (Global lower bound for the simplified LSM)

Assume that

(x %) P(x,0) > u), £,y > 0.

el
(L+ )72 &0
Then there exists 0 < C(k, T, d) (constant depending only on k, T and d) such that

C(k, T,d)

W’ V(t,X) € [07 T] X Rd.

[ ptexvyar>
Rd




Density estimates

Define
(1 +[u?)*2/?

w(x,u) = A P

for some A1, A2 > 0.

Theorem

In addition to (x  *), assume that p® € L, \1,\2 > d + 1 and that
/(1 + [6)2 6% (x, u)|P dx du < oo

Then, for all1 < p < oo,

<t<T

w2 /P Dt ||y gaay < 00 = max (e@T/2|wM/PDEFI p(1)l| o ac) ) < oo,
for0 <y <2,

1 "0 3(a’—72)/2||,,1 "4
[w}/P D2 o ll1p(g2ey < 00 = o, (t (o' =72)/2),1/pP Do fzp(t)HLp(de)) < 00,

for 0 < 2 < 2/3.




Density estimates

Strong wellposedness result

On the wellposedness of a strong solution to the simplified LSM: Since

N fb(v)D)?‘/p(t, x,v)dv fo‘/p(t,x, v)dv [ b(v)p(t,x,v)dv

D Blxip(t)] J p(t,x,v)dv J p(t,x,v)dv S p(t,x,v)dv

we cannot expect global D;”, estimate on B and our preceding estimates on
’
le/PDf}p(t)lle(de) and ||w!/PD2 p(t)|1p(r2dy only enable to grant

If w/P(D2p®)w/P(D p0) € LP(RY x RY) for p > d, a,a’ > d/p — 1/3 then there
exits a unique strong solution to (X¢, Us; 0 <t < T).

More general results require to extend the results of Chaudru de Raynal 2017, Fredezzi
et al. 2017 and Zhang 2017 results to a local framework.



Alternative approach

On the wellposedness problem of a LSM with singular diffusion

Bossy and J. (work in progress, 2018): Modified LSM with an additional viscosity in
the position dynamic

t t
xt:x0+/ b(Xs,Ys)ds-i-/ (Xs)dBs,
) 0

(3 * %)

Y= Yo+ /OtE[e(ys)\xs]der /OtEh(vs)\xs]dWs.

Assume that

(Ho) Jraxga(IXI? + 1y12)0°(x, ¥) dx dy < oo and px(0,x) = [za p°(x,y)dy is in
LY(RY) N LP(RY) for some p > 2d + 2. Moreover, for all R > 0, for all x € B(0, R),
there exists a constant mg > 0 such that px(0,x) > mg.

(H1) b and ¢ are bounded Lipschitz continuous functions.

(H2) o and « are in C?(R?) with bounded derivatives up to second order.

(Hs) Strong ellipticity is assumed for o: their exist ax, ax > 0, ax,a™ > 0 such that,
for all (x,y) € RY x RY,

aéP < éo(y)o(y) € < a*lgl’, VEERY,

o€’ < &y ()€ < atlE)?, VEER

Then there exists a unique strong solution to (x * %x).




Alternative approach

Some references
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