Various models around the Cucker-Smale model and
their flocking results

Tagung des Deutsch-Franzosischen Doktorandenkollegs

Fanny Delebecque, IMT

Joint work with P. Cattiaux and Laure Pédeéches

P. Cattiaux, F. Delebecque, L. Pédéches Modeling collective behavior 1/31



Modelling collective behavior... Flocking

"Flocking" behavior is a particular kind of collective behavior that can be

easily found in nature while observing the collective motion of a large
number of individuals.
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Modelling collective behavior... Flocking

"Flocking" behavior is a particular kind of collective behavior that can be

easily found in nature while observing the collective motion of a large
number of individuals.

"Flocking" property means that :
@ the distance between two individuals remains bounded

@ individuals move in the same direction
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Modelling collective behavior... Flocking

"Flocking" behavior is a particular kind of collective behavior that can be

easily found in nature while observing the collective motion of a large
number of individuals.

Modelling issues :

@ How local interactions at the individuals scale may lead to collective
behavior ?

@ Which kind of rules drive the local interactions?
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0 A few Cucker-Smale models, What about flocking ?
@ Cucker-Smale Model 2007, Flocking
@ Choice of a symmetric communication rate
@ What about non-symmetric comm. rates ?
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Cucker-Smale Model

Founding papers : Cucker S. et Smale S. 2007
@ Cucker F., Smale S., "On the mathematics of emergence", Japan J. Math. 2007
@ Cucker F., Smale S., "Emergent behavior in flocks", IEEE Trans. Automat.
Control, 2007
Consider a group of N individuals, the i-th being represented by its
position x; € R and velocity v; € RY.

dx; dvi A&
o Vi, ar szzltbij(t)(‘/j — Vi)

@ )\ measures the strength of the interaction force between individuals.

e Fonction t — (ji(t));j is called communication rate and ;;(t) > 0
characterises the influence of individual j on individual i.

o A classical choice is v;i(t) = ¥(|x;i(t) — x;j(t)|) where 1 is usually
chosen positive, decreasing, (ex ¢(r) = m, for a given f3).
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Founding papers : Cucker S. et Smale S. 2007
@ Cucker F., Smale S., "On the mathematics of emergence", Japan J. Math. 2007
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Control, 2007
Consider a group of N individuals, the i-th being represented by its
position x; € R and velocity v; € RY.

dx; dvi A&
o Vi, ar szzltbij(t)(‘/j — Vi)

@ )\ measures the strength of the interaction force between individuals.

e Fonction t — (ji(t));j is called communication rate and ;;(t) > 0
characterises the influence of individual j on individual i.

o A classical choice is v;i(t) = ¥(|x;i(t) — x;j(t)|) where 1 is usually
chosen positive, decreasing, (ex ¢(r) = m, for a given f3).

Cucker-Smale model is thus an agent-centered (or microscopic) mean-field
deterministic model, linear on velocities.
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A velocity-attracting model

dx; dv;
E:Vi’ 7_*Z¢(|XI xi|)(v; — vi). (1)

Remark : Somming (1) over i, Ieads to :
e V(t) = NZ Y, vi(t) = v° constant

o x(t) == 43N, xi(t) = X0+ tv°.
Consider, for t > 0

N
ZZ [vi(t) = vi(1)? <= 2NZ:\Vf(t) - V(f)!2> -

i=1j=1
We thus have :

92 _ A SN i —salvi— vy <0
= i —x|)vi —vj|” < 0.
dt ~ N

Can we prove the alignement of velocities along v ? Under which
conditions ?
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Flocking

dx; dv,
E =V, = Zwlj (VJ I .

We say that the group of individuals {(x;(t), v,-(t“))}f\’:1 flocks if :

V1<i,j<N, suplxi(t)—x(t)] <oo, lim |vi(t)—vj(t)]=0
t>0 t—00

The flocking condition can be re-written using the center of mass and the
mean velocity :

V1<i<N, sup|x(t)—x(t)] <oo lim |vi(t) —v(t)|=0
t>0 t—00

or equivalently :

V1<i<N, sup|x(t)—x(t)] <oo lim z(t)=0
t>0 t—o0
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0 A few Cucker-Smale models, What about flocking ?

@ Choice of a symmetric communication rate

© What about adding noise ?

© Three examples in this framework
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Bounded from below ¢ : Vr € R, |¢(r)] > ¢

CS'07, bounded from below v

dx; dv; A&
=V g NZw(IXf(t) = x () (v — vi).

j=1

Suppose that 1) is bounded from below by ¢ > 0, then :

dz AN bV
E:_sz ¥(Ixi — xj) \Vl—‘/j\zﬁ—ﬁz(t)

i=1j=1

thus : z(t) < et = Oand, forallt>0andall 1 </ j<N:
o0

2
xi(t) = x(1)] < | —x°\+/ V2(s)ds < X0 — X7 ‘ﬁ bounded.

NB : If z decreases fast enough, then, the group necessarily swarms.
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Case ¢(r) = +1 zy5, @ priori not bounded from below

dx; dvi A N 1
dr Vi, dt NJZ 1+‘X1 _Xj(t)|2)6(vj VI).

Let

Yi(w) = inf w(r) and TR_mf{ L max|xi(t) — x(2) ZR},

0<r< 1<ij<N

then, forall t < Tgpand 1 <i j<N:
Vz(0)N
Aty (R2)

There thus exists initial data that lead to flocking, whatever j is.

i(t) = x(1)] < %) = x| +
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A few flocking results... case ¥(r) = ﬁ

[Cucker Smale '07], [Ha, Tadmor'08], [Ha Liu '09]

Let (xi(t), vi(t))1<i<n be the solution to (1) associated with initial data
(7, v hr<i<n,

"Unconditional flocking" : case 8 € [0,1/2]

There exist x,,; > 0 and xp; > 0 such that, forall t >0, 1 </ < N :

Xm < |xi(t) — x(t)| < xm, et |vi(t) — V| < |v,-0 — V|e_w"”t

"Conditional flocking" : case § > 1/2

If moreover (x?, v?)1<;<n satisfy

_ 3/2 o —*
(1+2N]x° =0 =" > —3N(2AN) V0 — 79| [(i>2 T <i> g ] ,

Then conclusion still holds.
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0 A few Cucker-Smale models, What about flocking ?

@ What about non-symmetric comm. rates ?

© What about adding noise ?

© Three examples in this framework
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Non-Symmetric case : Which difference?

dx, i V,'

NN
5 = Vi g N; (X)) (v — vi) J

The communication rate is said to be non symetric when
ei(X(1)) # ¥ii(X(1)).

Cucker-Smale '07 : ¢;(X(t)) = 1+|X’(t) <O symetric
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Non-Symmetric case : Which difference ?

dX,' V,' A N
Pl g N ; Yii(X(t))(v; — vi)

The communication rate is said to be non symetric when

Pi(X(t)) # ¥ii(X(1)).

Cucker-Smale '07 : 9;;(X(t)) symetric

_ 1
T (a0 —(0)7)”

Principal difference : Summing (1) over i used to lead to :

dv _
G =0
@ the equation was dissipative :

o (iZJIVi(t) - Vj(t)|2> =% ZJ Yi(X () Jvi(t) — vi(t)? <0

P. Cattiaux, F. Delebecque, L. Pédéches Modeling collective behavior

13 /31



© What about adding noise ?
@ What kind of noise ? Where ?
@ Different notions of stochastic flocking
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What kind of noise ? Where ?

Goal : Add noise into the fully deterministic Cucker-Smale interaction.
Questions ?

@ Introduce a stochastic term into the kinetic mean-field dynamic
(diffusion term ? which form ?7)

@ Define a stochastic counterpart for the flocking property

@ Asymptotic time behavior of the stochastic Cucker-Smale-inspired
models ?
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What kind of noise ? Where ?
Personal freedom...

@ Each individual has its own alea
@ Modelled by a diffusion term of form o;(t)dW;(t)

» with W, independent d-dimensional Brownian motions
> with o(t) only depending on (xi(t), vi(t))

@ [Cucker, Mordecki'08], [Ha, Lee, Levy’09] : o; = v/Dly, [Pédeches’16]

N
dui(t) = S i(t) ((0) — (D) di + o (1), (1)) dWi(2)
j=1
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What kind of noise ? Where ?

Personal freedom...
@ Modelled by a diffusion term of form o;(t)dWi;(t)
» with W; independent d-dimensional Brownian motions
> with o;(t) only depending on (x;(t), vi(t))
Noisy environnement...
@ Common noise for all the individuals, intensity might depend on
position/velocity of each individual

e Modelled by a diffusion term of form o;(t)dW/(t), with W d-dimensional
Brownian motion

o [Ahn, Ha’lO]

dvi(t Z Vii(t) —vi(t)) dt + o(xi(t), vi(t)) dW(t)
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What kind of noise ? Where ?

Personal freedom...
@ Modelled by a diffusion term of form o;(t)dWi;(t)

» with W, independent d-dimensional Brownian motions
> with o(t) only depending on (xi(t), vi(t))

Noisy environnement...
@ Modelled by a diffusion term of form o;(t)dW/(t), with W d-dimensional

Brownian motion
Noisy perception in the interaction...
@ Imperfect perception of the distance with the others

@ Modeled by a diffusion term of form
Sy o (8)(vi(t) — vi(£))dWi (), with Wi d-dimensional independent
Brownian motions

@ [Ton, Link, Yagi'14] [Erban, Haskovec, Sun '15], [Sun-Lin '15]

dvi(t Z — vi(t)) [¥(t) dt + oy(t) dWy(t)]
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What kind of noise ? Where ?

Personal freedom...
@ Modelled by a diffusion term of form o;(t)dW;(t)

» with W; independent d-dimensional Brownian motions
> with o;(t) only depending on (x;(t), vi(t))

Noisy environnement...
@ Modelled by a diffusion term of form o;(t)dW/(t), with W d-dimensional

Brownian motion

Noisy perception in the interaction...

@ Modeled by a diffusion term of form
Zszl aij(t)(vj(t) — vi(t))dW,j(t), with W, d-dimensional independent
Brownian motions
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Which differences?

dvi(t Zwu ) ((£) = vi(t)) dt + o (0, vi(£))dWi(e)  (2)
dvi(t zwu (vi() — vi(e)) dt + o(x(e). vi(D)aW () (3)

dvi(t Z(VJ = vi(t)) [y (t)dt + oy (£)dWy(t)] (4)

Equilibrium : Remember that the CS model (1) admits v;(t) = v° as an
equilibrium of the velocities (v;; = 1))

@ In the case (4) it's still true,

@ In the general case of models (2) and (3), there is no immediate
equilibrium.
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Case of a noisy environnement...
In the case (3), if oi(t) = D(vi(t) — ve) where ve € RY is given, then

Vi = Ve is an equilibrium (see [Ahn, Ha '10])

N
dvi(t %Z ) (v (£) = vi(£)) dt + o (xi(£), vi(£))dW(2)
j=1

Case o constant : the dynamics can be split into two parts :

@ the dynamics of the mean velocity : v(t) is driven by a purely
stochastic process : dv(t) = odW/(t)

e the distance to the mean velocity : v;(t) = v;(t) — v(t) satisfies the
initial deterministic Cucker-Smale problem :
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And now... Laure...
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0 A few Cucker-Smale models, What about flocking ?

© What about adding noise ?

@ Different notions of stochastic flocking

© Three examples in this framework
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How to define stochastic flocking ? [Cattiaux, D., P. '17]
Recall that deterministic flocking is defined as, for all i € {1,..., N},

lim |vi(t) —v(t)]=0 and sup [xi(t)—X(t)] < oo ;
t—o00 )

X
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How to define stochastic flocking ? [Cattiaux, D., P. '17]
Recall that deterministic flocking is defined as, for all i € {1,..., N},

tll[go lvi(t) —v(t)]=0 and  sup [xi(t) —X(t)] < oo ;

<t<oo
The most natural forms of random flocking :

@ almost-sure flocking : the definition above holds almost surely :

Jim_ |vi(t) — v(t)] =0 a.s. and ogstufoo Ixi(t) — Xx(t)| < o0 a.s.;
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How to define stochastic flocking ? [Cattiaux, D., P. '17]
Recall that deterministic flocking is defined as, for all i € {1,..., N},

tILn;o lvi(t) —v(t)]=0 and \S;J<poo Ixi(t) — x(t)| < o0 ;
The most natural forms of random flocking :
@ almost-sure flocking : the definition above holds almost surely :
Jim_ |vi(t) — v(t)] =0 a.s. and 0\5.;1<poO Ixi(t) — Xx(t)| < o0 a.s.;

e [LP9-flocking : convergence in L* of the velocities towards the
center of mass, boundedness of the positions around their center
of mass in L9 :

Jim E[Jvi(t) = v(t)P] =0 and  sup E[|x(t) —x(t)|] < occ.

0<t<oo

If g =1, we simply say that there is ILP-flocking.
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How to define stochastic flocking ? [Cattiaux, D., P. '17]
Recall that deterministic flocking is defined as, for all i € {1,..., N},

tIer;o lvi(t) —v(t)]=0 and \S;J<poo Ixi(t) — x(t)| < o0 ;
The most natural forms of random flocking :
@ almost-sure flocking : the definition above holds almost surely :
Jim_ |vi(t) — v(t)] =0 a.s. and 0\5.;1<poO Ixi(t) — Xx(t)| < o0 a.s.;

e [LP9-flocking : convergence in L* of the velocities towards the
center of mass, boundedness of the positions around their center
of mass in L9 :

Jim E[Jvi(t) = v(t)P] =0 and  sup E[|x(t) —x(t)|] < occ.

0<t<oo

If g =1, we simply say that there is ILP-flocking.

There are others : mean flocking and weak flocking, but these two are
the most demanding.
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0 A few Cucker-Smale models, What about flocking ?

© What about adding noise ?

© Three examples in this framework
@ Noisy environment and constant communication rate
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Noisy environment and constant communication rate

Take the same d-dimensional random noise W impacting all particles :
fori e {1,....,N}, k e {1,....d},

dvf(t) = =X (vf(2) = 7(2)) dt + D (vf(2) = vE) awk()
with
@ 1 > 0 constant communication rate;

o W= (W, ... W9, Wk a Brownian motion;
e D>0and v, € RY.
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Noisy environment and constant communication rate

Take the same d-dimensional random noise W impacting all particles :
forie{1,...,N}, ke {1,..,d},

dvf(t) = =X (vf(£) = 7(2)) dt + D (vf(e) — vE) dwk(1)
General strategy :

@ Step 1 : study of the evolution of v(t);
@ Step 2 : study of the distance to the mean : V;(t) = v;(t) — v(t).
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Noisy environment and constant communication rate

Take the same d-dimensional random noise W impacting all particles :
fori e {1,....,N}, ke {1,....d},

dvf(t) = =X (vf(£) = 7(2)) dt + D (vf(2) = vE) dwk()

Step 1 : macroscopic scale dv*(t) = D(v*(t) — vX)dW*(t) and thus :

vR(t) = vE + (75(0) — vF)ePW =T 5 vk pas.

t—+400 €
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Noisy environment and constant communication rate

Take the same d-dimensional random noise W impacting all particles :
forie{l,..,N}, ke {1,..,d},

dvf () = =X (vF(£) = 7(2)) dt + D (vf(8) — vE) dWk(p)

Step 2 : microscopic scale di*(t) = —\yvf(t)dt — DU}dWk(t), hence

Ak _ ak DWk—(D—2+>\¢)t
v (t) = v (0)e"" ~ 2 — 0 p.s.

t——+o0
Summary : Vi€ {1,...,N}, Vk e {1,...,d},

vi(t) = VR(t) 4 0F (t)t?mv p. s.
= Unconditional almost sure flocking.

What about the other kinds of stochastic flocking ?
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Noisy environment and constant communication rate
D2
vk(t) = vk + (FK(0) — vF)ePWI -5

ok(t) = Aik(o)eDWtk—(DTz—i-)\z/J)t

1

L!-flocking :
E (1o 1ok (0) et [ PWE-ZEY — 1ok (0) et 0
17 (1)]) = [07°(0)]e e = [7(0)|e™™" — 0.

Positions : xX(t) = x*(0) + [ v/(s)ds.
Hence :

sup E (|55(1)) < |+/ 9 (s)]) ds

< |%5(0)] + / 105(0)] e % ds < oo
0

= Unconditional L!-flocking.

P. Cattiaux, F. Delebecque, L. Pédéches Modeling collective behavior 24 /31



Noisy environment and constant communication rate

2t
vk(t) = vE + (75(0) — vk)ePW T

2
Oik(t) _ Aik(o)eDW:k_(DT+>\¢)t

L2-flocking :
Positions : as before,

—+o00
sup E (|84(0)]) < RO+ [ 10(0)]eods < o0
t>0 0

Velocities :

N N 2 k_op2 . '
E (’V,-k(t)‘z) _ ‘Vik(0)|2e(D 2A¢)tE <e2DWt 2D t) — ‘vik(o)’2e(D 2/\1/;)t.

L2-flocking < D? < 2\
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A case with almost sure flocking, but no L2-flocking
Two realizations of t — |0(t)| = |v(t) — v(t)], with an initial
configuration for which there is no L2-flocking, with

e d=2; e A=10;

o N=9; e D=T7;

FIGURE: Evolution of t — |U(t)] = |v(t) — v(t)].
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0 A few Cucker-Smale models, What about flocking ?

© What about adding noise ?

© Three examples in this framework

@ Noisy environment and general communication rate
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Noisy environment and general communication rate

Take the same d-dimensional random noise W/(t) impacting all
particles : for i € {1,...,N}, k € {1,...,d}

A N
dvk = — N Z Pi(t) (v — vjk) dt + D (v} — vE) dw/(t),
j=1
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Noisy environment and general communication rate

Take the same d-dimensional random noise W/(t) impacting all
particles : for i € {1,...,N}, k € {1,...,d}

N
dvf == S y(e) (v — v die+ D (vF — vE) aw (o)
j=1
with
o ;i = ;j(v(.), x(.)) locally Lipschitz, non-negative and symmetric (for

instance the Cucker-Smale rate) ;
@ D>0and ve. € RY,

Theorem [Cattiaux-D.-P. '17]

The system flocks almost surely. However, if 2Asup; ; ., ¥i (v, x) < D?
there is no LL2-flocking.
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Noisy environment and general communication rate

Take the same d-dimensional random noise W/(t) impacting all
particles : for i € {1,...,N}, k € {1,...,d}

A N
dV,'k = - N Z ¢U(t) (Vik - V_]k) dt+ D (Vik - V(f) dW(t)7

Theorem [Cattiaux-D.-P. '17]

The system flocks almost surely. However, if 2Asup; ; ., ¥ij(v,x) < D?
there is no L2-flocking.

Remarks :

@ Struggle between A and D.

@ In the deterministic case, unconditional flocking for the
Cucker-Smale communication rate only if v < 1/2... multiplicative
noise “improves" that.
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0 A few Cucker-Smale models, What about flocking ?

© What about adding noise ?

© Three examples in this framework

@ Flocking with positive probability
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Flocking with a positive probability

Take the same d-dimensional random noise W/(t) for all particles,

N
dvi = — 23" w(t) (vi — i) dt + o(v) dW()
j=1

with
° Y= 1Z(|x,- — xj|) locally Lipschitz, non-negative and non-increasing
(for instance the Cucker-Smale rate) ;
@ o globally K-Lipschitz continuous.
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Flocking with a positive probability
Take the same d-dimensional random noise W/(t) for all particles,

A N
dvi = — 5 2 $i(t) (vi — ) dt + o(vi) dW(1),
j=1
with

° Y= 15(|x,- — xj|) locally Lipschitz, non-negative and non-increasing
(for instance the Cucker-Smale rate) ;
@ o globally K-Lipschitz continuous.

Theorem [Cattiaux-D.-P. '17]

Under some assumptions on x(0), v(0), K and 1, there is flocking with a
positive probability, that is there exists p € (0, 1] such that

IP’(Vi € {1, N}, lim |vi(t) = 7(8)] = 0

and sup |xi(t) —x(t)| < oo) >p
0<t<oo
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A case with partial flocking

Two realizations of t — |0(t)| = |v(t) — v(t)|, with an initial
configuration — that does not satisfy the hypotheses of the theorem —
for which there is flocking in the deterministic case, with

e d=2; @ o diagonal,
o N=9; k’k()=1+5i“(k)
e A=10; ° U(x,¥) = ey
. 10 & v —vf B
dv,-(t):—9 ZmdtwL(l—l—sm( ) dWk(t), ke {1,2}
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A case with partial flocking

Distance to the mean velocity

Distance to the mean velocity
18 18
without noise without noise

6 with noise 6] with noise
14 14
12 124
104 10 -
8| 8
6 6
44 44
2| 24
1 T 0 T

o 05 1 15 2 25 3 35 4 45 5 55 § 0 05 1 15 2 25 3 35 4 45 5 55 6

FIGURE: Evolution of t — |V(t)| = |v(t) — v(t)].

The probability of flocking looks to be strictly between 0 and 1...
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Thank you!
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