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MATHEMATICAL MODEL FOR STATISTICAL LEARNING

I (Simplified) goal of a machine learning problem: predict a value Y ∈ Y (the
“label”) from observed data X ∈ X (the “input”).

I Find a prediction function f (X ) as close to Y as possible.
(In a sense to be specified)

I Data (X , Y ) are modeled as random.

I In this talk: Y is real-valued (regression,Y = R).
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RISK (=EXPECTED PREDICTION ERROR)

I Prediction will never be 100% perfect: we define a quantitative notion of error, and
the risk as its expected value.

I Squared prediction risk (for Y real-valued):

E(f ) := E
[
(f (X )− Y )2

]
.

I We want to find f so that E(f ) is as small as possible.
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REGRESSION

I Under the square prediction risk the optimal prediction function is

f ∗(x) = E[Y |X = x ],

the model is equivalently written as

Yi = f ∗(Xi ) + ξ i ,

with E[ξ i |Xi ] = 0 (ξ i = “noise”).

I Note: in this model, the excess risk of a predictor f with respect to the optimal f ∗ is

E(f )− E(f ∗) = E
[
(f (X )− f ∗(X ))2

]
=
∥∥f − f ∗

∥∥2
2,X ,
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“LEARNING” FROM DATA

I We do not access exactly to E(f ) := E
[
(f (X )− Y )2] (theoretical quantity)

I But we have observed data in a database: (Xi , Yi )i=1,...,n
“Training data”

I (Xi , Yi )i=1,...,n independent, identically distributed (i.i.d.) from PXY

I We can hope to approach E
[
(f (X )− Y )2] by the averaged error on the

database:

Ê(f ) :=
1
n

n

∑
i=1

(f (Xi )− Yi )
2

(“empirical error”).

5 / 35



LINEAR REGRESSION

I The linear case: X = Rp , f ∗(x) = fβ∗(x) = 〈x , β∗〉.

I In usual matrix form:
Y = X β∗ + ξ.

I X T
i form the lines of the (n, p) design matrix X

I Y = (Y1, . . . , Yn)T

I ξ = (ξ1, . . . , ξn)T

I “Reconstruction” error corresponds to
∥∥β∗ − β̂

∥∥2 .

I Prediction error corresponds to∥∥fβ∗ − f
β̂

∥∥2
2,X = E

[〈
β∗ − β̂, X

〉2
]
=
∥∥Σ1/2(β∗ − β̂)

∥∥ ,
where Σ := E

[
XX T ].
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THE FOUNDING FATHERS OF MACHINE LEARNING?

A.M. Legendre C.F. Gauß

The “ordinary” least squares (OLS) solution:

β̂OLS = (X T X )−1X T Y .
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WHY LINEAR REGRESSION?

(c) Randall Munroe, xkcd.com
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FROM LINEAR TO NONLINEAR
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EXTENDING THE SCOPE OF LINEAR REGRESSION

I Common strategy to model more complex functions:
map input variable x ∈ X to a so-called “feature space” X̃ through
x̃ = Φ(x) ∈ X̃ = RD .

I Typical examples (say withX = [0, 1]):

x̃ = Φ(x) = (1, x , x 2, . . . , x p) ∈ Rp+1;

x̃ = Φ(x) = (1, cos(2πx), sin(2πx), . . . , cos(pπx), sin(pπx)) ∈ R2p+1.

I More generally: feature space is a Hilbert spaceH:
I Functional Data Analysis: input x is already a function (e.g. idealized time series).
I Reproducing Kernel methods: popular and versatile in machine learning.
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CONVERGENCE OF OLS

I We want to understand the behavior of β̂λ, when the data size n grows large.
Will we be close to the optimal prediction β∗?

I Recall

β̂OLS =
(

X T X
)−1

X T Y =
( 1

n
X T X︸ ︷︷ ︸
:=Σ̂

)−1( 1
n

X T Y︸ ︷︷ ︸
:=γ̂

)
= Σ̂−1γ̂,

I Observe by a vectorial LLN, as n → ∞:

Σ̂ :=
1
n

X T X =
1
n

n

∑
i=1

Xi X T
i︸︷︷︸

=:Z ′i

−→ E
[

X1X T
1

]
=: Σ;

γ̂ :=
1
n

X T Y =
1
n

n

∑
i=1

Xi Yi︸︷︷︸
=:Zi

−→ E[X1Y1] = Σβ∗ =: γ;

I Hence β̂ = Σ̂−1γ̂→ Σ−1γ = β∗. (Assuming Σ invertible.)
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FROM OLS TO HILBERT-SPACE REGRESSION

I For ordinary linear regression withX = Rp (fixed p, n → ∞):
I LLN implies β̂OLS (= Σ̂−1γ̂)→ β∗(= Σ−1γ);
I CLT+Delta Method imply asymptotic normality and convergence inO(n−

1
2 ).

I How to generalize to X̃ = H?

I Main issue: Σ = E
[
XX T ] does not have a continuous inverse.

(→ ill-posed problem)

I Roadmap:
1. Need to consider a suitable approximation ζ(Σ̂) of Σ−1 (regularization).
2. Use a nonasymptotic version of vectorial LLN/CLT to control ‖γ− γ̂‖ and

∥∥Σ− Σ̂
∥∥.

3. Use (deterministic) functional calculus to get a handle on
∥∥β− β̂

∥∥ (reconstruction) or∥∥Σ1/2(β− β̂)
∥∥ (prediction).
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VECTORIAL BERNSTEIN’S INEQUALITY

I Result of Pinelis and Shakanenko (1985): if Z1, . . . , Zn are independent identically
distributed vectors in a Euclidean or Hilbert space such that:

I ‖Zi‖ ≤ B;
I E

[
‖Zi −E[Zi ]‖2

]
≤ σ2.

I Then it holds: ∥∥∥ 1
n

n

∑
i=1

Zi −E[Zi ]
∥∥∥ ≤ 2t

(
B
n
+

σ√
n

)
,

with probability larger than 1− 2e−t .

I Note: works in any dimension p – even in a Hilbert space (p = ∞)!

I Note: also holds if ‖Zi‖ is unbounded but satisfies Bernstein-type moment
conditions
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STATISTICAL ERROR CONTROL

Error controls were introduced and used by Caponnetto and De Vito (2007),
Caponnetto (2007), as a consequence of the Pinelis-Shakanenko inequality.

Theorem (Caponetto, De Vito)

Assume ‖X‖ ≤ 1, |Y | ≤ M and Var[Y |X ] ≤ σ2 a.s.
Let λ > 0 be fixed and define

N (λ) = Tr( (Σ + λ)−1Σ ) ,

then with probability at least 1− 12e−t :

∥∥∥(Σ + λ)−
1
2 (γ̂− γ)

∥∥∥ ≤ 2t

(
σ

√
N (λ)

n
+

2M√
λn

)
,

and ∥∥∥(Σ + λ)−
1
2 (Σ̂− Σ)

∥∥∥
HS
≤ 2t

(√
N (λ)

n
+

2√
λn

)
.
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EFFECTIVE DIMENSION

I Denote (µi )i≥1 the sequence of positive eigenvalues of Σ in nonincreasing order.

I Assumptions on spectrum decay: for s ∈ (0, 1); α, α′ > 0:

IP<(s, α) : µi ≤ αi−
1
s

resp.
IP>(s, α′) : µi ≥ α′i−

1
s .

I This implies quantitative estimates of the “effective dimension” entering in the
concentration bound,

N (λ) = Tr( (Σ + λ)−1Σ )
.
&

λ−s
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REGULARIZATION METHODS

I Main idea: replace Σ̂−1 by an approximate inverse, such as
I Ridge regression/Tikhonov:

β̂Ridge(λ) = (Σ̂ + λIp)−1γ̂

I PCA projection/spectral cut-off: restrict Σ̂ on its k first eigenvectors

β̂PCA(k) = (Σ̂)−1
|k γ̂

I Gradient descent/Landweber Iteration/L2 boosting:

β̂LW (k) = β̂LW (k−1) +
1
n

X T (Y − X β̂LW (k−1))

=
k

∑
i=0

(I − Σ̂)k γ̂ ,

(assuming
∥∥Σ̂
∥∥

op ≤ 1).
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GENERAL FORM SPECTRAL LINEARIZATION

I General form regularization method:

β̂Spec(ζ,λ) = ζλ(Σ̂)γ̂

for somme well-chosen function ζλ : R+ → R+ acting on the spectrum and
“approximating” the function x 7→ x−1.

I λ > 0: regularization parameter; λ→ 0⇔ less regularization

I Notation of functional calculus, i.e.

Σ̂ = QT diag(µ1, . . . , µp)Q ⇒ ζ(Σ̂) := QT diag(ζ(µ1), . . . , ζ(µp))Q

I Examples (revisited):
I Tikhonov: ζλ(t) = (t + λ)−1

I Spectral cut-off: ζλ(t) = t−11{t ≥ λ}
I Landweber iteration: ζk (t) = ∑k

i=0(1− t)i .
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ASSUMPTIONS ON REGULARIZATION FUNCTION

From now on we assume κ = 1 for simplicity. Standard assumptions on the
regularization family ζλ : [0, 1]→ R are:

(i) There exists a constant D < ∞ such that

sup
0<λ≤1

sup
0<t≤1

|tζλ(t)| ≤ D ,

(ii) There exists a constant E < ∞ such that

sup
0<λ≤1

sup
0<t≤1

λ|ζλ(t)| ≤ E ,

(iii) Qualification: for residual rλ(t) := 1− tζλ(t),

∀λ ≤ 1 : sup
0<t≤1

|rλ(t)|t ν ≤ γνλν,

holds for ν = 0 and ν = q > 0.
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STRUCTURAL ASSUMPTIONS

I Denote (µi )i≥1 the sequence of positive eigenvalues of Σ in nonincreasing order.

I Source condition for the signal: for r > 0, define

SC(r , R) : β∗ = Σr h0 for some h0 with ‖h0‖ ≤ R

or equivalently, as a Sobolev-type regularity

SC(r , R) : β∗ ∈
{

β ∈ H : ∑
i≥1

µ−2r
i β2

i ≤ R2

}
,

where βi are the coefficients of h in the eigenbasis of Σ.

19 / 35



CONVERGENCE ANALYSIS

I Recall linear model Y = X β∗ + ξ, regularized estimator β̂λ = ζλ(Σ̂)X T Y /n.
I Induces decomposition

β̂λ − β∗ = (ζλ(Σ̂)Σ̂− I)β∗︸ ︷︷ ︸
Approximation term

+ ζλ(Σ̂)X T ξ/n︸ ︷︷ ︸
Noise term

I Noise Term: has zero expectation, and∥∥ζλ(Σ̂)X t ξ/n
∥∥ ≤ ∥∥ζλ(Σ̂)

∥∥
op

∥∥X t ξ/n
∥∥ ≤ λ−1

∥∥∥ 1
n

n

∑
i=1

Xi ξ i

∥∥∥.
I Approximation Term (using source condition):

(ζλ(Σ̂)Σ̂− I)β∗ = rλ(Σ̂)Σr h0.

I If we can “replace” Σr by Σ̂r above (using concentration+operator perturbation
inequalities), we can use qualification assumption to bound∥∥∥rλ(Σ̂)Σ̂r h0

∥∥∥ . λr R.
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UPPER BOUND ON RATES

Theorem
Assume r , R, s, α are fixed positive constants and assume PXY satisfies (IP+)(s, α),
(SC)(r , R) and ‖X‖ ≤ 1, ‖Y ‖ ≤ M, Var[Y |X ]∞ ≤ σ2 a.s. Define

β̂n = ζλn (Σ̂)γ̂,

using a regularization family (ζλ) satisfying the standard assumptions with qualification
q ≥ r + 1

2 , and the parameter choice rule

λn =
(

R2σ2/n
)− 1

2r+1+s .

Then it holds for any p ≥ 1:

lim sup
n→∞

E⊗n
(∥∥∥β∗ − β̂n

∥∥∥p)1/p/
R
( σ2

R2n

) r
2r+1+s ≤ CN;

lim sup
n→∞

E⊗n
(∥∥∥fβ∗ − f

β̂n

∥∥∥p

2,X

)1/p/
R
( σ2

R2n

) r+1/2
2r+1+s ≤ CN.
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COMMENTS

I It follows that the convergence rate obtained is of order

CNR
(

σ2

R2n

) (r+θ)
2r+1+s

(with θ = 0 resp. 1/2 for reconstruction resp. prediction risk).

I The “constant” CN depends on the various parameters entering in the
assumptions, but not on n, R, σ,M!

I The result applies to all linear spectral regularization methods but assuming a
precise tuning of the regularization constant λ as a function of the assumed
regularization parameters of the target – not adaptive.
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“WEAK” LOWER BOUND ON RATES

Assume additionally “no big jumps in eigenvalues”:

inf
k≥1

λ2k
λk

> 0

Theorem
Assume r , R, s, β are fixed positive constants and letP ′(r , R, s, β) denote the set of
distributions onX ×Y satisfying (IP−)(s, β), (SC)(r , R) and Bernstein moments
conditions for the noise. (We assume this set to be non empty!) Then

lim sup
n→∞

inf
ĥ

sup
P∈P ′(r ,R,s,β)

P⊗n

 ∥∥∥S θ(h∗ − ĥ)
∥∥∥
HK

> CR
(

σ2

R2n

) (r+θ)
2r+1+s

 > 0

Proof: Fano’s lemma technique
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“STRONG” LOWER BOUND ON RATES

Assume additionally “no big jumps in eigenvalues”:

inf
k≥1

µ2k
µk

> 0

Theorem
Assume r , R, s, β are fixed positive constants and letP ′(r , R, s, β) denote the set of
distributions onX ×Y satisfying (IP−)(s, β), (SC)(r , R) and Bernstein moment
conditions for the noise. (We assume this set to be non empty!) Then

lim inf
n→∞

inf
ĥ

sup
P∈P ′(r ,R,s,β)

P⊗n

 ∥∥∥S θ(h∗ − ĥ)
∥∥∥
HK

> CR
(

σ2

R2n

) (r+θ)
2r+1+s

 > 0

Proof: Fano’s lemma technique
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PREVIOUS RESULTS

Error [1] [2] [3] [4]∥∥∥f
β̂
− fβ∗

∥∥∥
2,X

(
1√
n

) 2r+1
2r+2

(
1√
n

) 2r+1
2r+2

(
1√
n

) (2r+1)
2r+1+s

(
1√
n

) (2r+1)
2r+1+s

∥∥β̂− β∗
∥∥ (

1√
n

) r
r+1

(
1√
n

) r
r+1 N/A N/A

Assumptions r ≤ 1
2 r ≤ q − 1

2 r ≤ 1
2 0 ≤ r ≤ q − 1

2
(q : qualification) +unlabeled data

if 2r + s < 1

Method Tikhonov General Tikhonov General
[1]: Smale and Zhou (2007)
[2]: Bauer, Pereverzev, Rosasco (2007)
[3]: Caponnetto, De Vito (2007)
[4]: Caponnetto and Yao (2010)

Matching lower bound: only for
∥∥∥f

β̂
− fβ∗

∥∥∥
2,X

[2].
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GAINING COMPUTATIONAL EFFICIENCY
THE DIVIDE-AND-AVERAGE PARADIGM

Averaged prediction

Split Data

Predictions f1 f2 f3 fm
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GAINING COMPUTATIONAL EFFICIENCY
THE DIVIDE-AND-AVERAGE PARADIGM

I Divide and average:
I Divide sample (Xi , Yi )1≤i≤N into m equal-size subsamples
I Apply learning method β̂λ on each subsample (this can be distributed over m

independent machines)
I Take the simple average of the obtained estimators

I Use the same regularization parameter λn as the optimal one without
parallelization

I Rough intuition:
I The “bias” (approximation error) using a subsample should be of the same order as

when using the whole sample
I The “variance” (estimation error) is higher on a subsample, but gets reduced by

averaging
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DIVIDE-AND-AVERAGE ANALYSIS

I Suppose the computational complexity is of order n3.

I If we can distribute the load over m parallel computers each treating a sample of
size n/m, the overall complexity will be of order

m.(n/m)3 = n3/m2,

a gain of a factor m2!

I Theory question: how can we choose m as big as possible such that statistical
optimality (for convergence rates) is preserved?

I Answer is obtained again by using vectorial concentration tools (separately on each
machine, then for the final averaging step, which is also an i.i.d. average!)
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DIVIDE-AND-AVERAGE RESULT

Theorem
Under the same assumptions as in the previous theorem, using divide-and-average over
m = nα machines and with the same choice of regularization parameter λn as before
results in the same asymptotic bound (in all p-norms) on the convergence rate as for a
single machine, provided

α ≤ 2min(r , 1)
2r + 1 + s

I Approximation term: has nonzero expectation. No help from averaging, need to be
small for all machines. For this choose regularization parameter λn as in
single-machine case.

I The “replace Σr by Σ̂r ” step is the bottleneck giving rise to the limitation on α.
I Noise term: has zero expectation. Averaging over independent subsamples reduces

variability!
I Control moments via the single machine analysis. For moments of average use

vector-valued Rosenthal’s inequality due to Pinelis.
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SIMULATION: ROUGH SIGNAL
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SIMULATION: SUPERSMOOTH SIGNAL
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NON-I.I.D. DATA

I The convergence analysis is decomposed into:
I a probabilistic part: vectorial concentration inequality in Hilbert space
I a deterministic part: under the event of large probability where deviations are

controlled, use (deterministic) operator perturbation tools to get estimates

I What to do if the data is not i.i.d.? If we can find a replacement for Pinelis and
Shakanenko’s vectorial Bernstein inequality, we can follow through with the rest of
the analysis.
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VECTORIAL BERNSTEIN’S UNDER WEAK DEPENDENCE

I if Z1, . . . , Zn are independent identically distributed random vectors such that:
I ‖Zi‖ ≤ B;
I E

[
‖Zi −E[Zi ]‖2

]
≤ σ2.

I Weak dependence assumption:

Φ(k) := sup
{∥∥E [ϕ(Zi+k )|(Zj )j≤i ]− E [ϕ(Zi+k )]

∥∥
∞ | ϕ ∈ C, i ≥ 1

}
,

where C :=
{

x 7→ ‖x‖2; x 7→ 〈w , x〉, ‖w‖ ≤ 1
}
.

See: Maume-Deschamps (2006), Dedecker et al. (2007), Dedecker and Merlevede (2015)

I Then it holds: ∥∥∥∥ 1
n

n

∑
i=1

Zi −E[Zi ]

∥∥∥∥ ≤ 2t
(

B
n
+

σ√
n

)
,

with probability larger than 1− 2e−t .
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I Then it holds: ∥∥∥∥ 1
n

n

∑
i=1

Zi −E[Zi ]

∥∥∥∥ ≤ 2Ct
(

B
`∗n

+
σ√
`∗n

)
,

with probability larger than 1− 2e−t , for `∗n satisfying Φ
(⌊

n
`

⌋)
≤ B

` ∨
σ√
`

.
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CONCLUSION/PERSPECTIVES

I We filled gaps in the existing picture for linear learning methods in Hilbert space.

I The method (and convergence analysis) lend themselves well to parallelization.

I Extension to weakly dependent data.

I Concentration + operator perturbation methods offer a nice and robust set of
mathematical tools to analyze convergence.

I Adaptivity: ideally attain optimal rates without a priori knowledge of r nor of s !
I Lepski’s method/balancing principle: in progress. Need a good estimator forN (λ)!

(Prior work on this: Caponnetto; need some sharper bound)
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