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@ Yves Atchadé (Univ. Michigan, USA)
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@ Adeline Samson (Univ. Grenoble Alpes, France).
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- Convergence of the Monte-Carlo EM for curved exponential
families (Ann. Stat., 2003)

- On Perturbed Proximal-Gradient algorithms (JMLR, 2017)

- Stochastic Proximal Gradient Algorithms for Penalized Mixed
Models (Statistics and Computing, 2018)

- Stochastic FISTA algorithms : so fast ? (IEEE workshop SSP,
2018)
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The topic

This talk : answer a computationnel issue

» Find
0" € argmingeq (f(6) + 9(6)) (1)
where
o © C R? (extension to any Hilbert possible; not done)

4

@ g is not smooth, but is convex and proper, lower semi-continuous (" prox’
operator)

e f isis not explicit / is untractable, V f exists but is not explicit / is
untractable
When proving results : f is convex and V f is Lipschitz

» In this talk : numerical tools to solve (1) based on first order methods;
convergence analysis.
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Applications in Statistical Learning

Example 1 : large scale learning

Minimization of a composite function

@ g=0or gis a penalty / regularization / constraint condition on the
parameter 6

o fis an (empirical) loss function associated to N examples

£(9) = Z

when N is large

For any ¢, f; and V f; can be evaluated at any point 6 but the computation of
the sum over N terms is too expensive.

Rmk that Vf(0) = E [V f1(0)] where I r.v. uniform on {1,---,N}.
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Applications in Statistical Learning

Example 2 : binary graphical model

Minimization of a composite function

@ Observation y € {—1,1}? (a binary vector of length p, collecting the
binary values of p nodes), with statistical model

)  exp (Z 0y + Z Z 92]3/1?/])

1=1 j=i+1

with an untractable normalizing constant exp(Zp). 0 collects the
"weights”.

@ f is the negative log-likelihood of N indep. observations

P N
f(@) = —log Z9+Z 0; < -t Z Y(n)> +Z Z 0i; (N_l Z ]Iy_(")_y_(")>
n=1 K J

=1 i=1 j=i+1
In this model V f(0) = Eg [H (X, 6)] where X ~ mg

@ g=0or gis a penalty / regularization / constraint condition on the
parameter 6 (the number of observations N << p?/2)
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Applications in Statistical Learning

Example 3 : Parametric inference in Latent variable models
Minimization of a composite function

@ g is a penalty function (e.g. for sparsity condition on 0)

@ f is the negative log-likelihood of the NV observations

f(0) = —10g/x h(z,Y1.n;0) v(dz)

and the gradient is of the form

9) h(.’L’, Yl:N;e)
Sy h(u, Yi.n; 0)v(du)

Vf(G)z/Xag log h(x, Y1:n; v(dz)

i.e. an expectation w.r.t. the a posteriori distribution (known up to a
normalizing constant in these models)
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A numerical solution: proximal-gradient based methods

Numerical solution : the ingredient

argming c g F(0) with F(0) = f(0) + g(0)
— —~—

smooth  non smooth

The Proximal Gradient algorithm

Given a stepsize sequence {yn,n > 0}, iterative algorithm:
Ont1 = PrOX’Yn+17g (On — Yn+1V f(6n))
where
. 1
Prox, o(r)  argmingco (9(0) + -0 7|1

Proximal map: Moreau(1962)
Proximal Gradient algorithm: Beck-Teboulle(2010); Combettes-Pesquet(2011); Parikh-Boyd(2013)

@ A generalization of the gradient algorithm to a composite objective fct.

o A Majorize-Minimize algorithm from a quadratic majorization of £ (since Lipschitz gradient) Which
produces a sequence {6,,n > 0} such that

F(fnt1) < F(6n).

In our frameworks, V f(6) is not available.
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A numerical solution: proximal-gradient based methods

Numerical solution : a perturbed proximal-gradient algorithm

The Perturbed Proximal Gradient algorithm

Given a stepsize sequence {yn,n > 0}, iterative algorithm:

On+1 = Proxy, ;.9 (On — yn1Hni1)

where Hy+1 is an approximation of V f(0,).

Useful for the proof: observe

Ont1 = Proxy, 1,9 | On = 1V f(0n) — yns1 (Hnpr — Vf(0n))

perturbation
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A numerical solution: proximal-gradient based methods

Convergence result : the assumptions (1/2)

argming o F'(6) with F(0) = f(0) + g(8)
where

o the function g: R* — [0, 00] is convex, non smooth, not identically equal
to +00, and lower semi-continuous

e the function f: R? — R is a smooth convex function
i.e. f is continuously differentiable and there exists L > 0 such that

IVFO) V@) <L|o-0| V0,0 R

o © C R? is the domain of g: © = {# € R?: () < o0}

@ The set argmingF' is a non-empty subset of ©.
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A numerical solution: proximal-gradient based methods

Convergence results (2/2)

Ont1 =Proxy, g (0n — Ynt1 Hni1) with Hpq1 = Vf(6,)

Set: L = argming (f + g) Mnt1 = Hpy1 — Vf(0r)

Theorem (Atchadé, F., Moulines (2017))

Assume

e g convex, lower semi-continuous; f convex, C* and its gradient is
Lipschitz with constant L; L is non empty.

® > ¥n =400 and v, € (0,1/L].

o Convergence of the series

> varallmsal?, D Ynttlnt1, D Ynt1 (Tas Tt
n n n

where Ty, = Proxy,, ,,,¢(0n — Ynt1V f(0n)).

Then there exists 0, € L such that lim,, 6,, = 0.
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A numerical solution: proximal-gradient based methods

Sketch of proof

Its proof relies on
© a deterministic Lyapunov inequality

2 2 . 2 2
10n+1—0x11" < 102 —6xlI” = 2vnt1 (F(nt1) —min F) =241 (Tn = 0x, Mnt1) + 275 41 10041 |l

non-negative signed noise

@ (an extension of) the Robbins-Siegmund lemma

Let {vn,n > 0} and {xn,n > 0} be non-negative sequences and
{&n,n > 0} be such that &, exists. If for any n >0,

Unt1 < Un — Xnt1 + Ent1

then 3~ xn < 00 and lim, v, exists.

Rmk: deterministic lemma, signed noise.
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A numerical solution: proximal-gradient based methods

What about Nesterov-based acceleration ? (FISTA)

Let {t,,n > 0} be a positive sequence s.t.

Tnti1tn(tn —1) < ’)’ntifl

Nesterov acceleration of the Proximal Gradient algorithm

Ont1 = Proxy, g (Tn — Y1V f(Tn))

tn — 1
(On+1—0n)
tn+1

Tn+l — 0n+1 +

Nesterov(2004), Tseng(2008), Beck-Teboulle(2009)

Zhu-Orecchia (2015); Attouch-Peypouquet(2015); Bubeck-Lee-Singh(2015); Su-Boyd-Candes(2015)

1
(deterministic) Proximal-gradient F(6,) —min F =0 <ﬁ>
(deterministic) Accelerated Proximal-gradient F(6n) —minF =0 (%)
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A numerical solution: proximal-gradient based methods

Convergence results for perturbed FISTA

When V f(7,) is replaced with Hp41
Perturbed FISTA

Hn+1 ~ Vf(Tn)

Ont1 = PfOXwnH,g ( — Yn+1Hn 1)

Tn+l = 9n+1 + t (0n+1 9 )

n+

Under conditions on 7y, t, and on the perturbation 7,1 def Hypp1 —Vf(m)

Z%an (zn — 0", nt1) < 00

we have (F., Risser, Atchadé, Moulines; 2018)
o lim, v, +1t2F(0,) exists
o Explicit control of this quantity.



Stochastic approximation-based algorithms, when the Monte Carlo bias does not vanish

Case of Monte Carlo approximation

Outline

Case of Monte Carlo approximation



Stochastic approximation-based algorithms, when the Monte Carlo bias does not vanish

Case of Monte Carlo approximation

Monte Carlo approximation

» We consider the case when

V(0) = /X H(z,0) 7o(dz)

and the approximation relies on a Monte Carlo approximation

Mp41

def 1
Hop1 = H(X;n;0,
= o ; (Xjni )

» In our motivating examples 2 and 3
@ g is known up to a normalization constant
e exact sampling from 7y is not possible

@ MCMC techniques can always be used : at iteration n, the points
Xi,n, X2, - are from a Markov chain with invariant distribution 7y, .
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Case of Monte Carlo approximation

Convergence results on Markov chains r. vouines (2003)

@ The approximation is biased

[mnﬂ > H(Xin,0 7] 7é/H(az,e) 7o, (dz)

i=1

@ The bias may vanish when the number of points tends to infinity

Mp 41
[ > H(Xin, \f] —/H(x,e) o, (do)| < E0n Xom)
e i=1 Mn+1
Mp41 R
Bl > H(Xn0) - [ H(w0) o, (02) ]fgLf‘“
Mn41 o mi+1

@ The control of this bias depends on the current value of the parameter 6,,

These results depend on the ergodic properties of the Markov chain:
assumptions on the target density g and on the transition kernel Py of the
Markov chain are required.

Assumptions of the form sup, sup,, |H(z,6)|/W (x) < co are also used in these
bounds.
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Case of Monte Carlo approximation

Impact of the bias (1/2)

let us check the condition “Y" vnnn < co w.p.1":

Z%Hnnﬂ = Z Yot1 (Hnv1 — V(0n))

» The RHS

S it {Hnit — E[Hopt | Falb + 3 s (B [Hot 7] — VF(0,)}

n

unbiased MC: null
biased MC: O(1/my,)

» The most technical case: the biased case with constant batch size m,, = m
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Case of Monte Carlo approximation

Impact of the bias (2/2) - case m, =m =1

o Let Py be the Markov transition kernel of the chain with inv. dstribution
Ty.
@ Solution fIg to the Poisson equation

H(x,0) — / H(y, 0)mo(dy) = Ho — PyHo(x)
@ This yields, by choosing Xo,n = X1,n-1

H(X1 0 0n) — / H(y, 6 )0, (dy) = Ho, (X1) — Py, Ho, (X1.0)
X

= ﬁon (Xin) — Penﬁon (Xon) + Penﬁon (Xon) — Penﬁon (X1n)
= Hp, (X1.n) — Pa, Ho, (Xo.n) Martingale increment

+ Penﬁen (X1,n-1) — Pen_lﬁon_l(Xl,n_l) Regularity in

+ P9n71ﬁ9n71 (X1,n-1) — P, ﬁgn (X1,n) telescopic



S

Stochastic approximation-based algorithms, when the Monte Carlo bias does not vanish

Case of Monte Carlo approximation

Strategy 1: vanishing bias m, — oo (1/2)

» For almost-sure convergence of {0,,n > 0}

Conditions on the batch size m,, and the stepsize -,, for the convergence

2
;% = o0, 2 ZL—T; < 00 ; ;—Z < oo (biased case)

Conditions on the Markov kernels: There exist A € (0,1), b < 0o, p > 2 and a measurable
function W : X — [1, +00) such that

sup |Hg|w < oo, sup PgWP < AWP +b.
6ce 0€e©

In addition, for any £ € (0, p), there exist C < oo and p € (0, 1) such that for any z € X,

‘
s |1 Pg" (z,-) = mollyye < Cp" W' (). (2

Condition on ©: O is bounded.

Constant step sizes v, =  are allowed as soon as > m,, ' < cc.



S

Stochastic approximation-based algorithms, when the Monte Carlo bias does not vanish

Case of Monte Carlo approximation

Strategy 1: vanishing bias m, — oo (2/2)

» For rates of convergence in L? on the functional

I (2300 - min], < |3 P00 - min ], <.

u, = O(lnn/n)
with increasing batch size and constant stepsize

Y = Yx My X N.
Rate with O(n?) Monte Carlo samples !

After n iterations : the rate of the perturbed Proximal-Gradient is O(1/n),
using n2 Monte Carlo simulations.

Given n Monte Carlo simulations: the rate is O(1/+/n).
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Case of Monte Carlo approximation

Strategy 2: NON-vanishing bias m, = m. (1/2)

» " Stochastic Approximation” framework genveniste, Metivier, Priouret (1990)

» For almost-sure convergence of {0,,n > 0}

Conditions on the stepsize ,, for the convergence
Condition on the step size:
Z’yn=+oo Zwﬁ<oo Z|fyn+1—’yn|<oo
n n n

Condition on the Markov chain: same as in the case "increasing batch size” and there exists a
constant C' such that for any 0,0’ € ©

[Py () — Pyr(z; ) llw
W (=)

|Ho — Hys|w + sup + llmg — morllw < C 16— 0|
&
Condition on the Prox:

sup supy ! ||Prox, q(0) — 6| < co.
~E(0,1/L] 0€©

Condition on ©: © is bounded.
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Case of Monte Carlo approximation

Strategy 2: NON-vanishing bias m,, = m. (2/2)

» For rates of convergence in L? on the functional

I (2320 - min],, < |3 P00 - min ], <.

w, = O(1/yn)

with (slowly) decaying stepsize
_ —
'yn—ﬁ,ae[l/Zl] My = My

With averaging: optimal rate, even with slowly decaying stepsize v, ~ 1/y/n.

After n iterations : the rate of the perturbed Proximal-Gradient is O(1/y/n),
using n Monte Carlo simulations.
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Case of Monte Carlo approximation

What about Stochastic FISTA ?

» We prove F. Risser, Atchadé, Moulines (2018)

limn’F(0,) < co  a.s. supn’E [F(0,)] < oo

with
ta=0(n), =7 m.=0(n"

» After n Monte Carlo simulations :
o the rate is O(1//n)

@ the same rate as the (perturbed) Proximal-Gradient with an averaging
strategy.
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Perturbed Proximal-Gradient algorithms and EM-based algorithms

Latent variable models, curved exponential family

@ One motivation was " penalized inference in latent variable models”
argmin, — log/ h(z,0)v(dx) + g(0)
X

@ When curved exponential family
h(z,0) = exp(6(0) + (S(x), ¥ (0)))
@ In that case, Proximal-Gradient algo gets into
Ont1 = Prox, g (6n = Yat1{V(6n) + ¥(6,)S5(6,)})

where

§(0n) = / S(2) 7o, (d2).
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Perturbed Proximal-Gradient algorithms and EM-based algorithms

EM and Gdt-Prox

@ Expectation-Maximization: a famous algorithm to solve this optimization
issue in these models

@ |t can be shown oiier, F., samson (2018) that the proximal-gradient algorithm is a
(Generalized) EM algorithm under regularity conditions on ¢, ), S.
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Stochastic EM and Stochastic Gdt-Prox

» Stochastic proximal-gradient algorithm

Ont1 = Proxy, g (0n — Yn41{V@(0n) + ¥(05)Sn+1})

where ~
Sn+1 =~ S(Gn)

» Strategy 1

Mnp+1

> S(Xjn)

Jj=1

» Strategy 2

Mp41

Sn+1—(1_5)

]'Il

» These two strategies correspond resp. to a (generalized) MCEM and a
(generalized) SAEM.
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