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Let:

© Xq,..., X, 1Li.d. with unknown law P on a measurable space
(X,A4);

=AM = (A Ay 3 partition of & st. we know P(A,.(N)) -

- Pa(f) = 1 37, f(X;) the empirical measure indexed by F ;

~n

- an(f) = Vn(Pa(f) — P(f)) the empirical process indexed by F.

If 7 is a Donsker class, an % G in [®(F) where G is the
n—+00
P-brownian bridge, i.e the Gaussian process with covariance

Cov(G(f), G(9)) = P(fg) — P(HP(9)-
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Raking-Ratio method

Literature: Deming/Stephan, Sinkhorn, Ireland/Kullback.

Description:

AP T AD T A2 TRafAD] [ PLAD]
A 02 |025| 01 | 055 0.52
AV 101 ]02]015] 045 0.48
P,[A®] | 03 | 045|025 1
P[AM] 1031 | 04 | 0.29

We have a table of frequencies whose margins do not correspond to
known margins. The algorithm proposes to correct this



Raking-Ratio method

AD T AP T AL TPO[AO] | PLAO]

AD 0.189 | 0.236 | 0.095 | 052 0.52
1Y 011 | 021 | 016 | 048 0.48
P [AD] | 0299 | 0.446 | 0.255 1

P[A®] | 031 | 04 | 029

The totals for each line are first corrected by applying a rule of three.
Each cell is multiplied by the ratio of the expected total of each line
on the total of each line.



Raking-Ratio method

AD T A7 T AP TPPAD] [ PIAD]
AD 0.196 | 0.212 | 0.108 | 0.516 0.52
A 0.114 | 0.188 | 0.182 | 0.484 0.48

PPLA®] | 031 | 04 | 0.29 1

PLA®] | 031 | 04 | 029

The same reasoning is applied to correct the totals for each column.
These last two operations are repeated in a loop.



Raking-Ratio method

AD T AP [ AP T POAM] [ pLAO]

AD 0199 | 0212 | 0.109 | 052 0.52
A 0111 0188 [ 0.181 | 048 0.48
P{[A@] | 031 | 04 | 029 1

P[A@] 031 | 04 | 0.29

Very quickly the algorithm stabilizes. Totals are the expected totals.
For this example it took only 7 iterations.

Remark: we can rake on more than two partitions!
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Notation of Raking-Ratio method

In turn N the algorithm does:

My 41 (N4 ( (/\/+1))
(N+1) (4) — M ~AANF YT
AUV = 3, o8 A,

We define the raked empirical measure ]P’EN) to be Pﬁ,o) =P, and

(N4 ) My +1 ) P(A(qu))
Py (f) = Z Pr (A1) =
pe P (A)

In particular, IP,SN+W>(A1(N+1)) = P(A/.(N“)),Vj =1,..., My



Notation of Raking-Ratio method

Let o () = VAP (f) — P()) the raked empirical process.

(N+1)
P(A!
CY,E,N-'J)(D _ Z ( ] )

(N) (N+1) (N) (N+1)
B (1) — ERAM 0™ (A ))
W PgN)(A}(N+1)) ( n Uy J n (A
with E[fjA] = 57,

In particular, aﬁN“)(Aj(N”)) 0, Vj=1,..., My

N) -
Remark: a(n ) is no more centered.
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Raking-Ratio method

Goals
- Properties of a,SN)(f) ;

- Weak convergence in ¢{*(F) of af,’v)(]-“) when n — +oo towards a
centered Gaussian process G<N>(]-‘) :

- Variance of GM(f): is it lower than that of G? If a loop is
performed with the Raking-Ratio method, does the variance
decrease with each loop turn?

- If we rake only two partitions, what's the limit of a,ﬂN) (F) as
n,N — 400?



Theoretical results

Law of iterated logarithm
If F satisfies some entropy conditions then for all Ny € N,

No
n M
li A — IP — Pllr <2 T+ —)as
rllnlilcf LLn O<N<N || H]: \/70-}_/%:[1 ( " 5N)

where
+ 8y = minj<m, P(AM) ;
0% = supx Var(f) ;
M = ||fll 7.

Recall that

n
limsup s | —||Pn — P||7 < V20 £.
n—+400 LLn



Theoritical results

Talagrand inequality
If F satisfies some entropy conditions then for all Ng € N and t > t,

P <0<nlwvax ||a,, )H}- > t) < Dy exp(—Dyt?),

or

(N) < v _ 2
P (,mas, lafllx > t) < 0t ep(=at),

for some Dy, D,,v > 0.

1



Theoritical results

Weak convergence of "
Under some entropy conditions on F,
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)
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Theoritical results

Weak convergence of "
Under some entropy conditions on F,

@,...,af") L (GO,...,GM)) in ¢®(F% - RW)

)
n—+4oo

with G™) the Gaussian process defined by

MN+1
GO = ¢ and G(N+1)(D — G(N)(D - 2 EmA;N-&—U]G(N)(A}_(N-&-U)
j=1

Recall that
p(aM D)y
N+1 N N+1)7 (N) 5 (N4
Oéfq - )(f) = Z W (ag )(f1A(N+W)) —E[ﬂA/( ’ )]aﬁ, )(Aj( - ))>
JSMyyq =N J .



O

| |

—————————.
@ ps.

Results: KMT, Berthet-Mason.



N

Strong approximation of o, ’ (F)
Under some entropy conditions on F we can construct on the same

probability space Xi, ..., X, and a version GM of G such that for
large n,

) [
P(Og;vax Ha — Gy, ||}->Cvn><nz,

with v, — 0.

By Borell-Cantelli,

Ny

max ||ap

G|, —
0<N<Ng H]: Op.s,(Vn)-

14



Consequence of strong approximation

Berry-Esseen bound
Under some entropy conditions on F,

(N) (N)
max supsup |P i <x)—PGY(f) < x)| < Cv,.
OstXNo f;rp x:ﬂg (an ( ) ( ( ) !



Consequence of strong approximation

Berry-Esseen bound
Under some entropy conditions on F,

max  sup sup ]P’(agN) () < x) = P(GCM(f) < x)| < Cvy.
O0<N<No fe F xeR

Bias and variance estimation
Under some entropy conditions on F, there exists C > 0 such that

: Vn ™)
limsup — max sup|E[P - P ‘ < C,
imsup " mox. sup [[B( (7] —P(f)

lim sup n sup [Var(P" () — %Var(G(N) (f))‘ <C

n—+w Vn fer



Raking-Ratio results

We denote
- E[flA®] = (E[AAP], ... E[AR]);
- GLA®] = (G(A"), ..., GAT));
* (Pawiam)ij = P(A,-(k) |A,'([))~

~(N)

Expression of G
For all N e N* and fe F it holds

N
6" () =G - 3 o () GAY]
k=1
where

o () =ERAP+ Y (NP aamPaiam - P awaa-n EIAD].
I<SL<N—R
kR<h<---<l <N

16



Raking-Ratio results

We denote (Var((Xi, ..., Xn)"))ij = Cov(X;, X))

Variance and covariance of GI")
Forall Ne N* and f,g € F it holds

Var(G™(f) = Var(G(f) — Z oM (- Var(GLAM]) - o (f)
k=1
Cov(GM(f),GM(g)) = Cov(G(f),G(g))

_ Y Cov (8" "- GLA®], 0" (g)" - GLAM])
k=1



Raking-Ratio results

Corollary 1
Forany N e N and fe F, Var(G™M(f)) < Var(G(f)).

Forany {fi,....fm} € F, Xm — anN) is positive definite with

= = Var(GM(f),...,GM (fn))"),
¥, = Var((G(fi), ..., G(fm))}).



Raking-Ratio results

Corollary 1
Forany N e N and fe F, Var(G™M(f)) < Var(G(f)).
Forany {fi,....fm} € F, Xm — anN) is positive definite with
£ = Var(GW (), ..., 6™ (fn))"),
Tn = Var((G(fi), ..., G(fm))").

Corollary 2
Let No, Ny € N st. Ny = 2Ny and B

A(No—[) — A(N1_f)7 V0 < I < NO' \ /
Then for all fe F, \ /

Var(GN)(f)) < Var(GMo) (f)).




Results for 2 margins

We note A = A® = {A1,...,Am,} and B= A" = {By,...,Bm,}.

Expression of G(V)
let Ne Nand fe F. Then for m e N,

GO () = G() — (S () GLA] - (502 () 18]
G0 () = G(f) — (S () GLA] ~ (V% () GIB]
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Results for 2 margins

We note A = A® = {A1,...,Am,} and B= A" = {By,...,Bm,}.

Expression of G(V)
let Ne Nand fe F. Then for m e N,

GO () = 6() — (Sl (D) GLA] - (S50 () GIB)
G0 () = G(f) — (S () GLA] ~ (V% () GIB]
With S1(f\tla)ven(f) = Z,::o(PB\AP.A\B)k(E[ﬂA] — PB\AE[]CIB])

S = Sh_o(PaisPs)(E[f1B] — PyjsE[f1A])
S oven() = SSug(f) + (PaisPs4) T 'EIf1B]
S%)dd(f) = S en(N + (P51aPas) " TE[fA]

Recall that
GM () =G - Zh_ oM (Nt GLAD]
19



Results for 2 margins

Hypothesis
Matrices P 4;5Pp.4 and Py 4P 45 are ergodic.

20



Results for 2 margins

Hypothesis
Matrices P 4;5Pp.4 and Py 4P 45 are ergodic.

Convergence of S') (), ()

s (f),Sf_NOLd(]‘) for i =1,2 converge respectively towards

ieven

Si even(f), Si.oda(f). They verify the relations:

E[f
) ; SZ,even(D = Sz’odd(]‘) + ( ) .
£

E[f]

SLodd(D = SW,even(f) + ( .
E[f]

20



Results for 2 margins

The sequence of process (GV))y converges in distribution when

N — 40 to the centered Gaussian process G(®) indexed by F and
defined by

G(f) = G(f) — Sr.even(f)" - GLA] = S,000(f)" - G[BI-

0.050- loi

[Jeree.eme

Proc. emp. Raking Ratio

density

0.025-

21
0.000-




Extension 1: auxiliary information
learning




Introduction

Motivation
We suppose that the auxiliary information is given by an estimate of
the probability of belonging to a set of several partitions.

The auxiliary information is given by
PA[AM] = (Ba(A"), ... BL(AR))),
a multinomial distribution with ny > 0 trials and event probabilities

PLAM] = (P(ai™),..., P(AS))).

22



Introduction

Motivation
We suppose that the auxiliary information is given by an estimate of
the probability of belonging to a set of several partitions.

The auxiliary information is given by
Pu[AM] = @a(A"), ..., Py(Am)),
a multinomial distribution with ny > 0 trials and event probabilities
PLAM] = (PA™), ..., P(AR))-

Goal

We study the raking-ratio empirical process which uses P} [.AM]
instead of P[AM].

22



Introduction

Definition of P\ (F)

We define the N-th raking-ratio empirical measure with auxiliary
information learning P{") (F) as the same way as Py )(]-')

B (f) = P, (f) and for N > 1,

my (N)) N
™ 1)
Z %m< )(Flyw).

Notice that

BafAM] = (B a™), .. B (A0))) = PRLAM].

Recall that
P (AM)

S N))PEN_U(J‘TAJ(N) )-

23



Introduction

Definition of &\ (F)
We define the N-th raking-ratio empirical process with estimated
auxiliary information by

& (f) = V@Y (H) - P().

Notice that a{" (A)-(N)) # 0.

24



)

Strong approximation of o (F)
Under some entropy conditions on F we can construct on the same

probability space Xi, ..., X, and a version GM of GM™ such that for
large n,

~(N) _ ~(N) nlog(n) 1
P(og\/ix/\/om” -Gy, |;>C<Vn+ <ﬁ’

M (o)

with vy, — 0 and ng,) = miny<n, Ny.

25



Extension 2: re-sampling method
with auxiliary information




Introduction

Notation
Bootstrap is a statistical method for re-sampling. It replaces P by P,.

A general way to define the bootstrap is to multiply f(X;) by a random
variable z; such that E[Z;|X;] = 1 and Var(Z;) = 1.

26



Introduction

Notation
Bootstrap is a statistical method for re-sampling. It replaces P by P,.

A general way to define the bootstrap is to multiply f(X;) by a random
variable z; such that E[Z;|X;] = 1 and Var(Z;) = 1.

We define the bootstrapped empirical measure and process:

n Z Zlf arﬂ;(ﬂ ZW(P:(JP)_PH(D)-
=1 ’i 1
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Introduction

Notation
Bootstrap is a statistical method for re-sampling. It replaces P by P,.

A general way to define the bootstrap is to multiply f(X;) by a random
variable z; such that E[Z;|X;] = 1 and Var(Z;) = 1.

We define the bootstrapped empirical measure and process:

PR () Z,f an () = Vn(®5 (f) — Pa()).
Z/ 1 ),‘ 1

Goal

- Make the strong approximation of oif to G*, a P-Brownian bridge
independent of G ;
- Bootstrap the Raking-Ratio empirical process to simulate its
distribution.
26



Strong approximation of the bootstrapped empirical process

Strong approximation of ot

Under some entropy conditions on F we can construct on the same
probability space (Xn,Zn) and (G,,, G¥) of P-Brownian bridge such
that for large n,

1
P ({llan — Gallx > Cva} | lla = G3ll= > Cva}) < —,

with v, — 0 depends on the entropy of (F, P).

27



Bootstrap and Raking-Ratio

Goal
How can we adapt the bootstrap method to simulate the distribution
of the Raking-Ratio empirical process?

PF® — p# and
PH(A/(N+1))
pr® (Aj(NJH)) ’

ax® ) = vn@:" () — Ba(f).

Mn41
B0 = 3 B (f10e0)
j=1

28



Bootstrap and Raking-Ratio

Goal
How can we adapt the bootstrap method to simulate the distribution
of the Raking-Ratio empirical process?

PF® — p# and

PH(A/(N+1))
P:(N) (Aj_(N+1)) )
ar™f) = vn@:" (f) — Ba ().

Mn41
B0 = 3 B (f10e0)
j=1

Result
af™ — G*M) in ¢*(F) and G*™ has the same distribution as G

28



Thank you for your attention!

Questions?

28
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