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Goal Today:

Discussion on: real and integer numbers, combinatorial identities,

functions, integrals, infinite series, systems of functional or algebraic

equations, ...

We need: Some combinatorics, algebra, analysis, number theory, ...

Little Probability: random events, random variables, probabilities,

distributions, densities, moments, ... , also the LLN.

Standard Notations: (
n
k
), ... , N, R, ... , N , ..., P, E, mk .

Intriguing/Strange questions ... followed by Beautiful answers.

Maybe Surprising: The use of ideas/techniques from Probability.
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Modern Mathematics: Long story. Areas. For good and for bad.

Directly and/or indirectly mutually interrelated: ideas, notions,

results, techniques, consequences, etc., by keeping specifics!

History: Theory of Probability ... Kolmogorov (1933), based on Borel,

Lebesgue, Daniel, Caratheodori, ... Sceptics like Hardy also contributed,

without knowing ... [Recent Hardy’s condition ....]

Probability, Analysis, Discrete Math: Natural ideas to exploit:

Probabilities, Expectations are real numbers, density integrates to 1, etc.

Probabilistic Method: Paul Erdös and Alfred Rényi: In a finite set of

objects An, existence of an object with a given property α. If P[no α] > 0.

Striking Cases: Graph theory, Number theory, PDEs (Krylov - Evans).

Warning: Any serious area of research has to be taken seriously!
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Discrete Uniform Distribution: Random variable (r.v.) X ∼ Un.

The value of X is a number in the set {1,2, . . . ,n}, each has probab 1
n
.

Die (fair, standard, symmetric): each of 1,2,3,4,5,6, probab 1
6
.

Continuous Uniform on (0,1): X ∼ U(0,1), values in (0,1), density

f (x) = 1 for x ∈ (0,1); 0 otherwise. U(0,1) = β(1,1), what is β(a,b)?

Beta distribution: X ∼ β(a,b), a > 0,b > 0, X continuous, density

f (x) =
xa−1(1 − x)b−1

B(a,b)
, x ∈ (0,1).

Recall that B(a,b) and Γ(a) are the Euler beta- and gamma-function:

B(a,b) = Γ(a)Γ(b)
Γ(a+b)

, Γ(a) = ∫
∞

0 xa−1e−xdx ; Γ(n + 1) = n!.
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Combinatorial Identity: For any k ,n ∈ N, 1 ≤ k ≤ n, one holds:

(
n

k
)

k

∑
j=0

(−1)k−j
n + 1

n + 1 − j
(

k

j
) = 1. (∗)

It looks ∼ easy, as it is!

Proof: Use that: Density f (x), x ∈ I ⇔ f ≥ 0 on I and ∫I f (x)dx = 1.

Take a r.v. X ∼ β(n − k + 1, k + 1), so its density is

f (x) =
xn−k(1 − x)k

B(n − k + 1, k + 1)
, x ∈ (0,1).
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Now, use Newton’s binomial formula for (1 − x)k , the fact that

Γ(n + 1) = n!, and see that

1 = ∫

1

0
f (x)dx =

1

B(n − k + 1, k + 1) ∫
1

0
xn−k

(1 − x)kdx

=
Γ(n + 2)

Γ(n − k + 1)Γ(k + 1) ∫
1

0
xn−k

k

∑
j=0

(
k

j
)(−1)k−jxk−jdx

=
Γ(n + 2)

Γ(n − k + 1)Γ(k + 1)

k

∑
j=0

(
k

j
)(−1)k−j ∫

1

0
xn−jdx

=
(n + 1)!

(n − k)! k!

k

∑
j=0

(−1)k−j(
k

j
)

1

n − j + 1
= (∗).

Exercise: Find another proof of (*).
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Two Identities more:

First: Here n, k , j ∈ N, with j ≤ k ≤ n and s ∈ N0, Show that

n−k+j

∑
m=j

(
m − 1

j − 1
)(

n −m

k − j
) = (

n

k
);

n−k+j

∑
m=j

(
m + s − 1

j + s − 1
)(

n −m

k − j
) = (

n + s

k + s
).

Story: IMO 1980, Washington. BG team, 8 full solutions.

Second: For any n ∈ N,

n

∑
i=1

(
2i

i
)(

2n − 2i

n − i
) = 4n.

Hint: Uses E[(X 2
1 +X 2

2 )
2], X1, X2 ∼ N(0,1), indep. (X 2 ∼ χ2

1)
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Hadamard Inequality: If f (x), x ∈ (a,b) is a convex function, then

f ( a+b
2

) ≤ 1
a+b ∫

b

a
f (t)dt ≤ 1

2
(f (a) + f (b)). (∗)

Hint: Convexity ⇒ f (x) ≥ f (u) + (x − u)f ′(u), any u, x ∈ (a,b).

Take r.v. X ∼ F on (a,b), by Jensen Ineq. and x = EX , u = X , find

0 ≤ E[f (X )] − f (EX ) ≤ E[(X − EX ) f ′(X )].

Equality iff f is linear, or X takes one fixed value w.p. 1.

Then, let X ∼ Uniform on (a,b), density 1
b−a

on (a,b), EX = 1
2
(a + b),

E[(X − 1
2
(a + b)) f ′(X )] = 1

2
(f (a) + f (b)) − 1

b−a ∫
b
a f (t)dt.

Hence, easy to write the details and get exactly Hadamard’s (∗).
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Play a Lottery: you may win one or two million dollars?!

Standard die: {1,2,3,4,5,6}, each with probability 1
6
.

House/Casino Game Rules: You can play with n dice, where

n = 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20.

Toss your dice, get points: X1, . . . ,Xn. Find the sum Σn = X1 + . . .+Xn,

and the product Πn = X1 ⋯ Xn. You win only if Σn = Πn.

Play with black n, pay $n and if Σn = Πn, win $ n3. With red n:

n=5, pay $100, win $100,000;

n=10, pay $200, win $200,000;

n=15, pay $1,000, win $1,000,000;

n=20, pay $2,000, win $2,000,000.

Question: Are you ready to play? Why are 5, 10, 15 and 20 so special?
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Reformulate the Problem: Start with a fixed set M6 = {1,2,3,4,5,6}

and let n ∈ N. Choose n numbers x1, . . . , xn from M6, independently

(possible repetitions) and solve the following Diophantine equation:

x1 + . . . + xn = x1 ⋯ xn. (3)

Comment: (3) has a solution ⇔ Wn = P[Σn = Πn] > 0, chance to win.

If no solution to (3), your probability is Wn = 0, you win nothing!

Case 1: n = 1 ⇒ trivial, W1 = 1.

Case 2: n = 2 ⇒ (2,2) ⇒ W2 =
2!
2!

1
62 .

Case 3: n = 3 ⇒ (1,2,3) ⇒ W3 =
3!

1!1!1!
1
63 .

Case 4: n = 4 ⇒ (1,1,2,4) ⇒ W4 =
4!

2!1!1!
1
64 .

Case 5: n = 5 ⇒ (1,1,1,2,5), (1,1,1,3,3), and (1,1,2,2,2) ⇒

W5 = ( 5!
3!1!1!

+ 5!
3!2!

+ 5!
2!3!

) 1
65 .
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Exercise: Solve (3), see Wn > 0 for n = 6,7,8,9,10,11,12,13,14.

Surprising Fact: For n = 15, eq. (3) does not have a solution!

I.e. Σ15 = Π15 never happens, no win with 15 dice! [Sept’13, real story!]

Next: Wn > 0 for n = 16,17,18,19, but for n = 20, again W20 = 0.

Interestingly, W21 > 0, W22 = 0, W23 > 0, W24 = 0 followed by Wn > 0 for

n = 25, . . . ,30, and then for n = 31, again, W31 = 0, etc.

Def: Casino number is n for which eq. (3) does not have a solution;

otherwise, n is a usual number.

Casino numbers: 38,49,95,255,529,983. They appear very irregularly.

Recent Result: There are infinitely many casino numbers and infinitely

many usual numbers.

Question: We have found that W5 > 0, W10 > 0, W15 = 0, W20 = 0.

Good reason for 15, 20 to be red. Why are 5 and 10 red?
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General Model: Boxes, in each m balls, m ∈ N, the numbers from

Mm = {1,2, . . . ,m} used to mark the balls, 1↔ 1, standard numbering.

Plato perfect solids: m = 4 for tetrahedron, m = 6 for cube, m = 8 for

octahedron, m = 12 for dodecahedron, and m = 20 for icosahedron.

Choose n boxes, select randomly one ball from each, get x1, x2, . . . , xn.

n is called a casino number if there is no solution to the Diophantine eq.

x1 + x2 + . . . + xn = x1 x2 ⋯ xn in the set Mm = {1,2, . . . ,m}.

Otherwise, n is called a usual number.

Statement: Take arbitrary m ∈ N and let Mm = {1,2, . . . ,m}.

(a) For any n we can tell exactly, this n is, or is not, a casino number.

(b) Both the casino numbers and the usual numbers are infinitely many.

Remark: With special, nonstandard numbering of the balls in the boxes,

we can achieve: (i) all n are casino numbers; (ii) all n are usual numbers.
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Corollary: For any m there is a minimal casino number, nm. Examples:

m = 4 (tetrahedrons) n4 = 6, next is 9

m = 6 (cubes) n6 = 15, next is 20

m = 8 (octahedrons) n8 = 24, next is 34

m = 12 (dodecahedrons) n12 = 24, next is 44

m = 20 (icosahedrons) n20 = 24, next is 80

Comment: For fixed m, Mm and T , a program can be written to

produce all casino numbers in [1,T ]. For m = 6, M6 = {1,2,3,4,5,6} and

T = 100,000, there are 98,417 casino numbers and 1,583 usual numbers.

Result: If pT is the ‘density’ of the casino numbers in the interval [1,T ],

then pT → 1 as T →∞. There is a T0 such that with probab ∼ 1
2

a

randomly chosen n from [1,T0] is a casino number. Similarly, for any p.

Mixed game: Choose n and play with any combination of n Plato solids.
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200 years, K. Weierstrass Th (1885) Any continuous function on a

closed bounded interval can be approximated uniformly by polynomials.

Bernstein Th (1912): Let f (x), x ∈ [0,1] be a continuous function,

Bn(x) =
n

∑
k=0

f (
k

n
)(

n

k
)xk

(1 − x)n−k (Bernstein Polynomials).

Then, Bn(x) → f (x) uniformly on [0,1]; (sup norm) ω(f ,n−1/2).

Proof: > 100 years ago! Chebyshev Ineq. P[∣X − a∣ > ε] ≤ 1
ε2 Var[X ].

Idea: n Bernoulli trials, y, Xi = 1 or 0 with probab x and 1 − x ,

Sn = X1 + . . . +Xn ⇒ Sn ∼ Bin(n, x), P[Sn = k] = (
n
k
)xk(1 − x)n−k .

Sn

n
→ x , n →∞ (Bernoulli LLN) ⇒ Bn(x) = E [f (

Sn

n
)] → f (x).

In 2013: 300 years of “Ars Conjectandi”, by Jacob Bernoulli.

J. Stoyanov Probability and Other Branches of Mathematics



Uspensky Problem (AMM, 1932): Show that

∫

1

0
⋯∫

1

0

x2
1 + ⋯ + x2

n

x1 + ⋯ + xn
dx1⋯dxn →

2

3
as n →∞.

Solutions rely essentially on the powers 2 and 1.

Next, with π and e the known classical constants, show that

∫

1

0
⋯∫

1

0

xπ1 + ⋯ + xπn
xe

1 + ⋯ + xe
n

dx1⋯dxn →
e + 1

π + 1
as n →∞.

General result: For functions ϕ, f and g , all > 0, ∼ integr., as n →∞,

1

cn
0
∫ ⋯∫ ϕ(x1)⋯ϕ(xn)

f (x1) + ⋯ + f (xn)

g(x1) + ⋯ + g(xn)
dx1⋯dxn →

∫ f (x)ϕ(x)dx

∫ g(x)ϕ(x)dx

Hint: Xn → X ⇒ E[H(Xn)] → E[H(X )], H cont. bound. If X = c , LLN.
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Riemann Zeta Function: ζ(z) = ∑
∞

n=1
1
nz
, Re z > 1.

Basel problem: Find ζ(2) = ∑
∞

n=1
1
n2 =? Euler (1735): ζ(2) = π2

6
.

New Probabilistic Proof: We need a r.v. X ∼ HS , hyperbolic secant,

f (x) =
1

π

1

cosh x
=

2

π

1

ex + e−x
, x ∈ R.

Next, take X1, X2, indep. as X , find density f2 of X1 +X2, convolution

f2(x) =
4

π2

x

ex − e−x
, x ∈ R and use that ∫

∞

−∞

f2(x)dx = 1 ∶

1 = 8
π2 ∫

∞

0
xe−x

1−e−2x dx = 8
π2 ∫

∞

0 xe−x ∑
∞

k=0 e−2kxdx = 8
π2 ∑

∞

k=0
1

(2k+1)2 .

⇒∑
∞

k=0
1

(2k+1)2 =
π2

8
. But ζ(2) = ∑odd +∑even = ∑

∞

k=0
1

(2k+1)2 +
1
4
ζ(2).
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Infinite Systems of Functional Equations: f =?

Statement 1c: Each of the following systems

∫

∞

0
xk f1(x)dx = k! and ∫

∞

0
xk f2(x)dx = (2k)!, k = 1,2, . . .

has a unique solution: f1(x) = e−x , f2(x) = 1
2

x−1/2e−x
1/2
, x > 0.

Statement 2c: The following system

∫

∞

0
xk f3(x)dx = (3k)!, k = 1,2, . . .

has infinitely many solutions, namely:

f3(x) =
1

3
x−2/3 e−x

1/3
(1 + ε sin(

√
3 x1/3

− π/3)) , x > 0, ε ∈ [−1,1].
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Infinite Systems with Infinitely Many Unknowns:

Unknown are infinitely many real numbers x1 < x2 < . . . < xn < . . . and

p1,p2, . . . ,pn, . . . , where all pn > 0 and p1 + p2 +⋯ + pn +⋯ = 1.

Statement 1d: There is no solution to each of the systems:

∞

∑
n=1

xk
n pn = k!, k = 1,2, . . . and

∞

∑
n=1

xk
n pn = (2k)!, k = 1,2, . . . .

Statement 2d: There are infinitely many solutions to the system

∞

∑
n=1

xk
n pn = (3k)!, k = 1,2, . . . .

Question: Idea? What is behind? (‘c’ = continuous, ‘d’ = discrete)
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Idea: r.v. ξ ∼ Exp(1), e−x , x > 0, X = ξ2, Y = ξ3, finite moments:

mk(ξ) = E[ξk] = k!, mk(X ) = E[X k] = (2k)!, mk(Y ) = E[Y k] = (3k)!

Fact 1: ξ ∼ Exp(1), is the only distr with the moments {k!}. Next,

X = ξ2, density 1
2

x−1/2 e−x
1/2
, the only distr with the moments {(2k)!}.

Therefore, no other distributions ⇒ Statements 1c, 1d.

Fact 2: Y = ξ3, density f3(x) = 1
3

x−2/3 e−x
1/3
, the distrib. is non-unique.

Berg & co.: There are infinitely many continuous and infinitely many

discrete distributions all having moments {(3k)!} ⇒ Statement 2c, 2d.

Open Question: Find at least one solution to the system in the above

Statement 2d.
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Two Exercises and Another Open Question:

1. Prove that

1

(sin π
5
)2
+

1

(sin 2π
5
)2

= 4;
1

(sin π
7
)2
+

1

(sin 2π
7
)2
+

1

(sin 3π
7
)2

= 8.

2. Prove that

1

1 ⋅ 2 ⋅ 3
+

1

4 ⋅ 5 ⋅ 6
+

1

7 ⋅ 8 ⋅ 9
+⋯ =

π
√

3

12
−

1

4
log 3;

∞

∑
n=1

1

(
2n
n
)
=

9 + 2
√

3π

27
.

Open Question: Prove or disprove that 2, 4, 8, 64, 2048 are the

only powers of 2 which are written by using only even digits. Any

other power of 2 needs at least one odd digit.
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Final Comments:

● Kolmogorov-Feynman-Kac formulas for solving 2nd order elliptic or

parabolic PDEs. The solutions can be represented as expectations of

functionals of Markov processes from Itô type stochastic differential

equations. Hence, need of Stochastic Calculus. Applications: MCMC ...

● Probabilistic methods in Number Theory and Graph Theory

Work by Erdös, Spencer, Kubilius, Siegel, Bollobas, ...

● Material Appropriate for:

Mini-Courses, Full-Time Courses, Research Projects for Students.

And, perhaps, Challenges for Professionals!
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