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The setting

Consider a second-order linear elliptic operator P with real coefficients in
divergence form

Pu := −div
[
A(x)∇u + ub̃(x)

]
+ b(x) · ∇u + c(x)u,

which is defined in a domain Ω ⊂ Rn, n ≥ 2 (or more generally, on a
smooth noncompact weighted Riemannian manifold Ω of dimension n,
where dν := m dx is a given measure).

Prototype equations are given by the Laplace-Beltrami operator P = −∆
and the Schrödinger operator P = −∆ + V (x).

P is symmetric if b̃ = b. In this case, P is in fact a Schrödinger-type
operator

Pu = −div
(
A∇u

)
+
(
c − divb

)
u = −∆A + V (x).
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Agmon’s problem

Problem (Agmon (1982))

Given a symmetric elliptic operator P in Rn, find a continuous,
nonnegative function W which is ‘as large as possible’ such that for some
neighborhood of infinity ΩR = {|x | > R} the following inequality holds∫

ΩR

Pϕϕdν ≥
∫

ΩR

W (x)|ϕ|2 dν ∀ϕ ∈ C∞0 (ΩR).

Agmon used such W to measure the decay of solutions of the equation
Pu = λu in Rn via the celebrated Agmon’s metric

ds2 := W (x)
n∑

i ,j=1

aij(x)dxi dxj , where
[
aij
]

:= A−1.

The decay is given in terms of W and a function h satisfying

|∇h(x)|2A < W (x) a.e. Ω.

Yehuda Pinchover (Technion) Optimal Hardy inequality Potsdam 3 / 15



Agmon’s problem

Problem (Agmon (1982))

Given a symmetric elliptic operator P in Rn, find a continuous,
nonnegative function W which is ‘as large as possible’ such that for some
neighborhood of infinity ΩR = {|x | > R} the following inequality holds∫

ΩR

Pϕϕdν ≥
∫

ΩR

W (x)|ϕ|2 dν ∀ϕ ∈ C∞0 (ΩR).

Agmon used such W to measure the decay of solutions of the equation
Pu = λu in Rn via the celebrated Agmon’s metric

ds2 := W (x)
n∑

i ,j=1

aij(x) dxi dxj , where
[
aij
]

:= A−1.

The decay is given in terms of W and a function h satisfying

|∇h(x)|2A < W (x) a.e. Ω.

Yehuda Pinchover (Technion) Optimal Hardy inequality Potsdam 3 / 15



Features of Hardy inequality W (x) = CH

|x |2
Let Ω? := Rn \ {0}. Consider the celebrated Hardy inequality∫

Ω?
|∇ϕ|2 dx ≥ λ

∫
Ω?

CH

|x |2
|ϕ(x)|2 dx ∀ϕ ∈ C∞0 (Ω?), (1)

where λ ≤ 1 and CH :=
(
n−2

2

)2
.

It has the following important features:

(a) P =−∆− CH
|x |2 is critical in Ω?, i.e., for any V (x)	 CH

|x |2 the inequality∫
Ω?
|∇ϕ|2 dx ≥

∫
Ω?

V (x)|ϕ(x)|2 dx ∀ϕ ∈ C∞0 (Ω?)

is not valid. In particular, λ = 1 is the best constant for (1).

(b) λ = 1 is also optimal for test functions supported in any fixed
neighborhood of either 0 or ∞.

(c) The corresponding Rayleigh-Ritz variational problem

inf
ϕ∈D1,2(Ω?)

{ ∫
Ω? |∇ϕ|

2 dx∫
Ω?

CH
|x |2 |ϕ(x)|2 dx

}
admits no minimizer.
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Criticality theory

Definition

Let P be a general, second-order elliptic operator on a domain Ω ⊂ Rn (or
on a noncompact manifold Ω), n ≥ 2.

P is nonnegative (P ≥ 0) in Ω if the equation Pu = 0 in Ω admits a
global positive (super)solution.

P ≥ 0 in Ω is said to be critical in Ω if P −W 6≥ 0 in Ω for any
W 	 0. Otherwise, P is subcritical in Ω.

If P 6≥ 0 in Ω, then P is supercritical in Ω.
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Criticality theory

Remarks
1 In the symmetric case, P ≥ 0 iff the quadratic form associated to P is

nonnegative on C∞0 (Ω) (i.e.
∫

Ω Pϕϕdν ≥ 0 ∀ϕ ∈ C∞0 (Ω)) (the
Allegretto-Piepenbrink theorem).

2 P is subcritical in Ω iff it admits a positive minimal Green function
G Ω
P (x , y) in Ω.

3 P is subcritical in Ω iff it admits a positive supersolution u in Ω which
is not a solution. So, P −W ≥ 0, where W := Pu/u 	 0.

4 If P is critical in Ω, then the equation Pu =0 admits a unique positive
(super)solution ψ in Ω, called the (Agmon) ground state of P in Ω.
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Optimal Hardy-weight: Features (a)–(c)
We assume that x0 = 0 ∈ Ω, and denote Ω∗ := Ω \ {0}.

Definition

Let P be subcritical in Ω. We say that W ≥ 0 is an optimal Hardy-weight
for P in Ω∗ if P −W has the following properties:

(a) P −W is critical in Ω∗. In particular,

max
{
λ ∈ R | P − λW ≥ 0 in Ω∗

}
= 1.

(b) λ = 1 is also optimal for the inequality P − λW ≥ 0 in any fixed
punctured neighborhood of either 0 or ∞̄, where ∞̄ is the ideal point
in the one-point compactification Ω̂ of Ω.

(c) Denote the ground states of P −W and P? −W in Ω∗ by ψ and ψ?.
Then ψψ? is not Wdν-integrable in any fixed neighborhood of either
0 or ∞̄ (P is said to be null-critical in Ω?).

Aim: For general P and Ω find an optimal Hardy-weight W
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The supersolution construction

Lemma (Supersolution construction)

Let vj be two positive solutions (resp. supersolutions) of the equation
Pu = 0, j = 0, 1, in a domain Ω. Then for any 0 ≤ α ≤ 1 the function

vα(x) :=
(
v1(x)

)α(
v0(x)

)1−α

is a positive solution (resp. supersolution) of the equation[
P − 4α(1− α)W (x)

]
u = 0 in Ω,

Where

W (x) :=
Pv1/2

v1/2
=
|∇v |2A

4v 2
≥ 0, v :=

v1

v0
, |ξ|2A :=ξ ·Aξ.

In particular, P −W ≥ 0 in Ω.
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Main result

Theorem

Let P be a subcritical operator in Ω, and let G (x) := G Ω
P (x , 0). Let u be a

positive solution of the equation Pu = 0 in Ω satisfying

lim
x→∞̄

v(x) = 0, where v(x) :=
G (x)

u(x)
.

Then W :=
|∇v |2A

4v2 is an optimal Hardy-weight in Ω?.

Furthermore, if P is symmetric and W > 0, then the spectrum and the
essential spectrum of the operator W−1P on L2(Ω?,Wdν) satisfy

σ(W−1P) = σess(W−1P) = [1,∞).

cf. Adimurthi-Sekar, Carron, Cowan, D’Ambrosio, Li-Wang, Cazacu-Zuazua, . . . .
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On the condition limx→∞̄
G (x)
u(x) = 0

Remark

By a result of A. Ancona (2002), if P is symmetric, or more generally if
G Ω
P (x , y) � G Ω

P (y , x), then there exists u > 0 satisfying the equation
Pu = 0 in Ω, and

lim
x→∞̄

G (x)

u(x)
= 0.
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Proof that σ(W−1P) = σess(W
−1P) = [1,∞)

Using the supersolution construction

vα(x) =
(
G (x)

)α(
u(x)

)1−α

with G and u not only for 0 ≤ α ≤ 1, but for α ∈ C satisfying

4α(1− α) = λ, where λ ∈ R,

we get solutions of the equation (W−1P − λ)u = 0 of the form

ϕ±(λ, x) := (Gu)1/2 (G/u)
±
√

1−λ
2 .

Case 1: λ ≤ 1.
Then ϕ±(λ, x) ≥ 0.
Hence, the Allegretto-Piepenbrink theorem implies

σ(W−1P) ⊂ [1,∞).
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Case 2: λ = 1. Then there is only one such a solution, namely
ϕ+(1, x) := (Gu)1/2.

But there is another solution ϕ−(1, x) := (Gu)1/2 log
(
G/u) which is not

positive, but dominates ϕ+(1, x) near the ends of Ω?.

Hence, by the (Khas’minskĭi criterion for recurrency), ϕ+(1, x) := (Gu)1/2

is a ground state and P −W is critical in Ω?.
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Case 3: λ ≥ 1.
In this case we have

|ϕ(λ, x)| ≤ ϕ(1, x) = (Gu)1/2.

Hence, by a recent Shnol-type theorem of S. Beckus & Y.P., we have
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Applications & Generalizations

1 Agmon’s estimates.

2 Optimal Rellich-type inequality.

3 Boundary singularities.

4 Finitely many ends.

5 The quasilinear case (Lp-Hardy type inequalities).

6 Optimal Hardy inequalities for operators on graphs (will be presented
tomorrow by Felix Pogorzelski’s talk).
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Thank you for your attention!
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