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Notation
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One cannot hear the shape of a drum.
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First isospectral example

Milnor in 1960 related (in a one-page-long article) the spectrum of
a flat torus R"/A with quadratic forms.

v € A* (=dual lattice of A), x € R, f,(x) = e2™/{v:¥),

Af, = 47?||v|?f, = Spec(R"/A) = {{47?||v|]? : v € N*}},
i.e. mult(4n2p) = #{v € A* : ||v|> = u} = the number of ways
that one can represent p by the quadratic form associated to the

lattice A*.

Witt (1942): the quadratic forms associated to the lattices Eg & Eg
and Dj; represent the same numbers (with multiplicities); in other
words, they have the same theta functions.

Therefore R1°/Eg & Eg and R1®/Di are isospectral.
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Lens spaces

Lens spaces are spherical space forms with cyclic fundamental
groups.

Parametrization: for ¢ € N and si,...,s, € Z satisfying
ged(q, sj) =1 for all j,

L(g;si,...,sn) = (7>\52"_1,

L cos(ZEL 51) sin(zw%) cos( 27:;”) S|n(2"5")
= dlag ({—sin( 7;51) cos(h%) i —S|n(2”s”) cos(2”s")
Equivalently, L(g;s1,...,5,) = S2"71/ ~ where

(z1,.--y20) ~ (21, ...,8%2,)

for any £ root of unity of order g.
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We associate to L(q; s1, ..., sn) the congruence lattice

L(g;s1,...,sn) ={(a1,...,an) €Z" : a151+--+aps, =0 (mod q)}.

n
For = (a1,...,an) € Z", set ||ull1 = > |ajl.
j=1

Definition
L, L' C Z" are said to be ||-||1-isospectral if, for all k >0,

#Hue L lply =kt =#{pe L |ull=k}

Theorem (L., Miatello, Rossetti, 2013)

The lens spaces L and L' are isospectral if and only if their
associated congruence lattices L and L' are ||-||1-isospectral.
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Spec(S2"71) : eigenvalues Ay := k(k +2n — 2),

mult(Ax) = dim Vi, , where 7, is the irreducible representation of
SO(2n) with highest weight ke;.

V. = harmonic homogeneous polynomials of degree k.
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We conclude that F;(z) = F;/(z) if and only if ©,(z) = ©,/(2).
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Rational expression for F/(z)

By using Ehrhart’s theory on counting integer points in polytopes,

Theorem (L., 2015)
Let L = L(q;s1,...,sn) and let L be the associated congruence
lattice. Then, there is a polynomial P;(z) of degree < q(n+ 1)
such that

Pc(2)
(1—2z2)""1(1 — z9)n+1"

Pc(2)
(]_ — ZQ)n+1

Oc(2) = =  F(z) =

This tell us that a finite part of the spectrum of L determines
Spec(L) (which was already known).

In 2016: an explicit description for Pz(z) in terms of L.
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Generalizations

e all-p-spectrum (2013). Joint R. Miatello and J.P. Rossetti, we
also consider the Hodge—Laplace operator acting on p-forms (in
place of the Laplace—Beltrami operator <» p = 0) of a lens space.

Theorem (L., Miatello, Rossetti, 2013)
Two lens spaces L and L' are p-isospectral for all p if and only if

#ue Lllulh=k Z(u) =0 =#{pe L't |ullr =k, Z(n) = ¢}

for all k >0 and 0 < ¢ < n. (Z(n) := the number of zero
coordiantes of yu.)

{L(49;1,6,15), L(49;1,6,20)} is the first pair of p-isospectral
Riemannian manifolds for all p which are not strongly isospectral
(isospectral w.r.t. every natural operator), in particular they are
not constructed by Sunada's method.
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Generalizations

e Dirac operator (2014). Joint S. Boldt we consider the Dirac
operator. We obtained:

» Description of Dirac spectra on spin lens spaces.
» Dirac isospectral characterization.

» New Dirac isospectral examples.

» A sequence of finite families with increasing dimension and
cardinal, and fixed fundamental group order.

» A sequence of 7-dimensional lens spaces with two

(non-isometric) spin structures.

A sequence of pairs of 7-dimensional lens spaces.

Computational examples.

Any example above is strongly isospectral.
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e Good orbifolds with cyclic fundamental group (2015). |
considered spaces '\ G/K with G/K a compact symmetric space
of real rank one (in place of G/K = $2"~1) and I a cyclic
subgroup of G.

e Explicit p-spectra of lens spaces (2016). | found an explicit
description of each p-spectrum of a lens spaces and the following

characterization for each pg: L and L’ are p-isospectral for all
0<p<poiff

Zeh 0¥z Zeh Oz)  forallo<h<py,

Where@ = o #{n € L |ullh =k, Z(p) =1} zk.

e A computational study (2017). The previous description let us to
make a computational study of p-isospectral lens spaces.



