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Notation

M a compact connected Riemannian manifold without boundary.

∆ : C∞(M)→ C∞(M) the Laplace–Beltrami operator.
Spec(M): λ such that there is f ∈ C∞(M) such that ∆f = λf ;

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λn → +∞,

in particular the multiplicity of an eigenvalue λ,
dim{f ∈ C∞(M) : ∆f = λf }, is finite.

Definition
M and M ′ are said to be isospectral if Spec(M) = Spec(M ′).

One cannot hear the shape of a drum.
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First isospectral example

Milnor in 1960 related (in a one-page-long article) the spectrum of
a flat torus Rn/Λ with quadratic forms.

v ∈ Λ∗ (=dual lattice of Λ), x ∈ Rn, fv (x) = e2πi〈v ,x〉,

∆fv = 4π2‖v‖2fv =⇒ Spec(Rn/Λ) = {{4π2‖v‖2 : v ∈ Λ∗}},

i.e. mult(4π2µ) = #{v ∈ Λ∗ : ‖v‖2 = µ} = the number of ways
that one can represent µ by the quadratic form associated to the
lattice Λ∗.

Witt (1942): the quadratic forms associated to the lattices E8 ⊕ E8

and D+
16 represent the same numbers (with multiplicities); in other

words, they have the same theta functions.

Therefore R16/E8 ⊕ E8 and R16/D+
16 are isospectral.
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Lens spaces

Lens spaces are spherical space forms with cyclic fundamental
groups.

Parametrization: for q ∈ N and s1, . . . , sn ∈ Z satisfying
gcd(q, sj) = 1 for all j ,

L(q; s1, . . . , sn) := 〈γ〉\S2n−1,

γ = diag

([
cos(

2πs1
q

) sin(
2πs1
q

)

− sin(
2πs1
q

) cos(
2πs1
q

)

]
, . . . ,

[
cos( 2πsn

q
) sin( 2πsn

q
)

− sin( 2πsn
q

) cos( 2πsn
q

)

])
.

Equivalently, L(q; s1, . . . , sn) = S2n−1/ ∼ where

(z1, . . . , zn) ∼ (ξs1z1, . . . , ξ
snzn)

for any ξ root of unity of order q.
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Isospectral characterization

We associate to L(q; s1, . . . , sn) the congruence lattice

L(q; s1, . . . , sn) = {(a1, . . . , an) ∈ Zn : a1s1+· · ·+ansn ≡ 0 (mod q)}.

For µ = (a1, . . . , an) ∈ Zn, set ‖µ‖1 =
n∑

j=1
|aj |.

Definition
L,L′ ⊂ Zn are said to be ‖·‖1-isospectral if, for all k ≥ 0,

#{µ ∈ L : ‖µ‖1 = k} = #{µ ∈ L′ : ‖µ‖1 = k}.

Theorem (L., Miatello, Rossetti, 2013)

The lens spaces L and L′ are isospectral if and only if their
associated congruence lattices L and L′ are ‖·‖1-isospectral.
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Proof

Spec(S2n−1) : eigenvalues λk := k(k + 2n − 2),

mult(λk) = dimVπk , where πk is the irreducible representation of
SO(2n) with highest weight kε1.
Vπk = harmonic homogeneous polynomials of degree k.

Spec(Γ\S2n−1) : eigenvalues λk , mult∆Γ
(λk) = dimV Γ

πk
.

FL(z) =
∑
k≥0

dimV Γ
kε1

zk = . . .

= (
∑

k≥0

(k+n−2
n−2

)
z2k)(

∑
k≥0 #{µ ∈ L : ‖µ‖1 = k} zk)

=
1

(1− z2)n−1
ΘL(z).

We conclude that FL(z) = FL′(z) if and only if ΘL(z) = ΘL′(z).
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Rational expression for FL(z)

By using Ehrhart’s theory on counting integer points in polytopes,

Theorem (L., 2015)

Let L = L(q; s1, . . . , sn) and let L be the associated congruence
lattice. Then, there is a polynomial PL(z) of degree ≤ q(n + 1)
such that

ΘL(z) =
PL(z)

(1− zq)n+1
=⇒ FL(z) =

PL(z)

(1− z2)n−1(1− zq)n+1
.

This tell us that a finite part of the spectrum of L determines
Spec(L) (which was already known).

In 2016: an explicit description for PL(z) in terms of L.
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Generalizations

• all-p-spectrum (2013). Joint R. Miatello and J.P. Rossetti, we
also consider the Hodge–Laplace operator acting on p-forms (in
place of the Laplace–Beltrami operator ↔ p = 0) of a lens space.

Theorem (L., Miatello, Rossetti, 2013)

Two lens spaces L and L′ are p-isospectral for all p if and only if

#{µ ∈ L : ‖µ‖1 = k, Z (µ) = `} = #{µ ∈ L′ : ‖µ‖1 = k , Z (µ) = `}

for all k ≥ 0 and 0 ≤ ` ≤ n. (Z (µ) := the number of zero
coordiantes of µ.)

{L(49; 1, 6, 15), L(49; 1, 6, 20)} is the first pair of p-isospectral
Riemannian manifolds for all p which are not strongly isospectral
(isospectral w.r.t. every natural operator), in particular they are
not constructed by Sunada’s method.
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Generalizations

• Dirac operator (2014). Joint S. Boldt we consider the Dirac
operator.

We obtained:

I Description of Dirac spectra on spin lens spaces.

I Dirac isospectral characterization.
I New Dirac isospectral examples.

I A sequence of finite families with increasing dimension and
cardinal, and fixed fundamental group order.

I A sequence of 7-dimensional lens spaces with two
(non-isometric) spin structures.

I A sequence of pairs of 7-dimensional lens spaces.
I Computational examples.
I Any example above is strongly isospectral.
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• Good orbifolds with cyclic fundamental group (2015). I
considered spaces Γ\G/K with G/K a compact symmetric space
of real rank one (in place of G/K = S2n−1) and Γ a cyclic
subgroup of G .

• Explicit p-spectra of lens spaces (2016). I found an explicit
description of each p-spectrum of a lens spaces and the following
characterization for each p0: L and L′ are p-isospectral for all
0 ≤ p ≤ p0 iff

n∑
`=0

`h Θ
(`)
L (z) =

n∑
`=0

`h Θ
(`)
L′ (z) for all 0 ≤ h ≤ p0,

where Θ
(`)
L :=

∑
k≥0 #{µ ∈ L : ‖µ‖1 = k , Z (µ) = `} zk .

• A computational study (2017). The previous description let us to
make a computational study of p-isospectral lens spaces.
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