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Preface

These are the notes of a series of three lectures that | gae dflax-Planck
Institute for Graviational Physics (Einstein Institute)dctober 2006. The aim was
to explain the basic ideas and applications of homology amdmology theories
for manifolds. The lectures were aimed at an audience withrigr knowlegde
of algebraic topology but it is assumed that the reader kradvesit manifolds and
differential forms up to the Stokes’ theorem.

Given the very short amount of time | had to be very selective @uld not give
complete proofs for any of the deeper results. The idea was tayive the stu-
dents a first working knowledge of (co-) homology. To encgeractive participa-
tion some exercises have been included in the lectures.

I am grateful to the participants of this course for livelgdission. Special thanks
go to Florian Hanisch who wrote a first draft of these notes puodluced most
illustrations.

Potsdam, November 2006,

Christian Bar
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1 Introduction

Topology, nowadays a huge field, is the science of topolbgicaces and contin-
uous maps. We will restrict ourselves to manifolds and simawdps even though
much of what we will do would, when suitably modified, work aslwn a larger
context. We will learn about two theories, de Rham cohomplagd simplicial
homology. The definition of de Rham cohomology is based olyaisamore pre-
cisely, on partial differential equations and differehttams. Simplicial homology
on the other hand is combinatorial in nature and based omusesing the space
into simple pieces, so-called simplices. It will turn oudtthoth theories are dual to
each other which is quite remarkable. This says in partidtit non-integrability
of certain partial differential equations has its only a@irmsthe combinatorial com-
plexity of the underlying space.

In topology one tries to answer the following type of quassio

Question 1. Are the manifolds)/; and M, diffeomorphic?

— -~ r

My =R\ {0} = | @
|

Answer. Yes, here is a diffeomorphisni/; — Mo, (0,t) — et - 0.

Question 2. Are the manifolds)/;, Ms and M3 diffeomorphic?

Answer. No, they are pairwise non-diffeomorphic. However, at themaaot we
are unable to prove this. The fact that we do not find a diffequinism does not
mean there is none.



Heuristically, the reason fak/;, M>, and M3 being pairwise non-diffeomorphic
is that they have a different number of “holes”. This arguhteeds to be made
precise.

Question 3. Are R? andR? diffeomorphic?

Answer. No, because they have different dimension.
That was easy, wasn't it? But what about

Question 4. Why must diffeomorphic manifolds have equal dimension?

Indeed, this needs justification.
The aim will be to find invariants that may distinguish noffebmorphic mani-
folds. In particular, we will show that the dimension is sachinvariant.

2 De Rham Cohomology

2.1 Definitions
Question 5. Does the PDE

of _ .2

or — Y,

o _,
have a solutiory € C*°(R?,R)?

Answer. No, because if it did have a solutigi then its differential would be

= gdx + gdy = y?dx + xdy
Oz oy

w:=df
and hence
0 =ddf = dw =2ydy Ndz + dz ANdy = (1 — 2y)dz A dy # 0,
a contradiction.
Question 6. Does?. =y, g_g = z have a solution?
Answer. Again, we compute the differential of a possible solutjgn
W :=df = ydr + xdy.

This timedw = dy A dx + dx A dy = 0, so no contradiction arises. Indeed,
f(x,y) = zyis a solution.



Question 7. Does gL = ——4—, L — -2 have a solutionf € C**(R? \
{0}, R)?

Answer. For the differential of a hypothetical solutighwe have

& =df = do +

————dx d
x2 + y? Y

X
x2 + y?
and hencelw = 0. So there is no immediate contradiction. Neverthelessetise
no solution.

Exercise 1. Why not?

These examples show that in order to have a solufida the PDEdf = w for
givenw the integrability conditioniw = 0 must hold. In general, this integrability
condition is not sufficient however. The following lemma sdlgat for open balls
the integrability condition is the only obstruction to finol@ions.

Lemma 1 (Poincaré Lemma)lf M is diffeomorphic to an open ball, then for
wGQk(M),k‘zl:

dw =0 & Ine Y M) dp=w
Now let M be ann-dimensional manifold and consider the sequence of exterio
derivatives on differential forms

d d

0 — QM) —4> ') 4 2(M) —4> ... 1

Q" M) —= 0
We haved o d = 0. Put

ZF(M) = ker(d : Q¥(M) — Q*1(M))  (closedk-forms)
B¥(M) :=im(d : Q¥ Y(M) — QF(M))  (exactk-forms)

Both Z* (M) and B¥(M) are linear subspaces 6f(M). Now d?> = 0 implies
(and is indeed equivalent t&j*(M) c Z*(M). Thus we may define

Definition 2. The quotient space

HgR(M) =

is called thek*™" de Rham cohomology of M.

Remark 3. If M is diffeomorphic to an open ball, then the Poincaré lemnya sa
Zk(M) = B*¥(M)forallk > 1,i.e. H¥; (M) =0forall k > 1.
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Remark 4. H}; (M) measures the extent to which the integrability condition
dw = 0 of the PDEdf = w fails to be sufficient for its solvability.

Definition 5. b*(M) = dim H%, (M) € {0,1,2,..., 00} is called thek'™ Betti
number of M.

If M is ann-dimensional manifoldy > 1, then the vector spac€¥ (M), Z*(M),
and B*(M) are always infinite dimensional for < & < n. The quotient space
HY. (M) is sometimes finite dimensional, sometimes infinite dimemeii It will
turn out that for compaci/ the Betti numbers are always finite.

In the simplest casd; = 0, de Rham cohomology is easily understood. Clearly
we have

Z°(M) = { f € Q°(M)|df = 0} = {locally constant functions on/}

and
B(M) = 0.
Therefore
HY (M) = Z°(M) = {locally constant functions of/}
and hence

b°(M) = # connected components 1.

So far we have associated to each manifold certain vectaespés de Rham co-
homologies. Now we also associate something to smooth nepeén manifolds.
Let f : M — N be a smooth map. There is a linear mfap: QF(N) — QF(M),
calledpull-back. Locally, it is given by

f*( Z Wiy dT™ A e A dwi’“) = Z (Wiyoiy, © f)df™ A+ A df'
i eig i mig

wheref? = 2% o f denotes theé!™ component off with respect to local coordinates
z', ..., 2" on N. A somewhat tedious computation yields

Lemma 6. The following diagram commutes:

*

QF(N) ——— QF(M)

; ]

Qk—i-l(N) I S Qk—i—l(M)



Corollary 7. Wehave f*(Z¥(N)) c Z¥(M) and f*(B*(N)) ¢ B*(M) and we
thus get a linear map
fre HéCR(N) - HgR(M)7
w] = [f*w].

Here and in the followingw] denotes the cohomology class of the closed farm
We have associated to any smooth map between two manifolearimaps be-
tween their cohomologies in all degrees. It should be enipbadshat the direction
“gets reversed”. Whilef mapsM to N the corresponding linear mags map

HY:(N) to HX; (M). This is why de Rham cohomology is called cohomology
rather than homology.

Lemma 8 (Functoriality Properties)
W MLINLP = (gofyr=rog
(2 (idm)* = idHé“R(M)

The proof of this lemma is not too hard. While (2) is trivia) (& a consequence of
the chain rule for the differential of the composition of twaps.

Example 9. Let us determine the induced map in a simple example. Let

M, ={pt} and
M, = D} U D3 LI D?

where theDJZ. are disjoint2-dimensional open disks. The mgpsends)M; to a
point in the first componend?, say.

f

M,

= M,

Denote byw; : M; — R the function, which takes the value 1 dhjz and 0
otherwise. Ther{ws,ws,ws) is a basis forz?(My) = HY (Ms). For the linear
map
[ HQR(MZ) - HQR(Ml)
— —

=~R3 ~R1



we havef*w; = wy o f = 1 and ffwy = f*ws = 0. Thereforef* is given by
the matrix(1,0,0). Observe that the precise point to whi¢lsends)/; does not
matter; it is only important that/; is mapped to the first component.flinapsiM;
to the second compone?, then the induced map d@i® de Rham cohomology
is given by the matrix0, 1, 0), similarly for the third component.

Remark 10. If M is the disjoint union of manifolds,M = M, Ul - - - LU M;, then
we get an isomorphism

HY (M) = Hig (M) @ - - & Hfp (M),
[w] = [wlp,] @@ [w]py]-

Definition 11. Smooth mapg,g : M — N are callechomotopic (f ~ g), if there
exists a smooth map' : M x [0,1] — N such that

f(x) = F(z,0)
g9(z) = F(z,1)
forallz € M.
This means that the magpcan be smoothly deformed into the map

Example 12. Let M = N = D™ ben-dimensional open balls, lgt = id;; and
let g be the constant map= 0. Thenf ~ g becausd’(x,t) := (1 — t) x defines
a homotopy. ClearlyF is smooth inz andt¢ and fort € [0, 1] andxz € D™ we have
F(x,t) € D™

Lemma 13.If f ~ g: M — N, then f* = g* : Hi. (N) — HE, (M) for all k.

Example 9 is a good illustration for this homotopy invariarat the maps induced
in cohomology.

Definition 14. Two manifolds)M and NV are callechomotopy equivalent (M ~ N)
if there exist smooth mapg: M — N andg : N — M such thaly o f ~ id,
andf og ~idy.

Clearly, if M and N are diffeomorphic {/ ~ N), then they are also homotopy
equivalent. The converse is not true:

Example 15. D™ ~ {pt} because we have the maps

fA{pt} — D" g: D" — {pt}
pt— 0 T — pt



satisfyingg o f = id,; andf o g = 0 ~ idp» by Example 12. This example
shows drastically that the dimension of a manifold is not enbtwpy invariant,
i. e. homotopy invariant manifolds may have different disiens. In order to
distinguish homotopy inequivalent spaces we need othariamts. Here they are:

Corollary 16. If M ~ N, then H%, (M) = HE.(N) and therefore b*(M) =
b (N) for all k.

Proof. Choosef : M — N andg : N — M such thatg o f ~ id;; and
fog ~idy. Then by functorialityg* o f* = (f 0o g)* = (idn)* = idHZfR(N) and
frfog* =-.. = idHé“R(M)' Thereforef* is an isomorphism witlif*) =1 = g*. O

Example 17. Observe that

R ifk=0

D" ~pt = H (D"~ H (pt)
b ar(D") dr(Pt) {O otherwise

The fact thatt X, (D) = 0 for k > 1 is precisely the statement of the Poincaré
lemma.

2.2 Mayer-Vietoris Sequence

Next we develop a tool to compute the de Rham cohomology oércomplicated
spaces by decomposing them into simpler parts. We start soithe algebraic
remarks. A sequence of vector spaces and linear maps

Pr—1

0 v s, 2 Vi 0 (1)

is calledexact if ker(pr11) = im(gg) for all k. In particular,p; is injective and
@11 is surjective. In this case, we have for finite dimensionakssV/;

(=1)7 dim V; = 0. (2)

l
=1

J

This can be proven by induction dniIn casel = 1 we have0 — V; — 0 hence
Vi = 0. Forl = 2 we haved — V; - V5 — 0 so thaty must be injective and
surjective. Thud/ = V5 and thereforelim 1, = dim V5.

If we write (2) in the form}_, o, dim V; = 3. jqqdim Vj, then it makes sense
and is true also for possibly infinite dimensional spacegalticular, if all but one
of the vector spaces in the exact sequence (1) are finite diored, then they must
all be finite dimensional.

Back to topology letM be a manifold and/, V' open subsets oM such that
UuV =M.



=U
=V
The inclusion maps
ju U —=M iv:UNV —=U
jv:V—=M iv:UNV—=V

induce maps on differential forms. The pull-back of a defetial form along an
inclusion map is of course nothing but the restriction ofdifferential form.

Lemma 18. The sequence

JIo®iy
—_—

0 — QF(M) OU) @ QF(V) X QR U N V) — 0

is exact for every k.

Proof. SinceU UV = M, ji; @ jy, is injective because any differential form on
M is determined by its restrictions 6 and V. This shows exactness @t (M).
Furthermore, it is obvious from the definition thai(j;; ® jy,) = ker(if; — ij/).
Namely, two forms o/ and V' respectively are restrictions of a form ad if
and only if they conincide on the intersectiéhn V. This proves exactness at
QkU) @ QF (V).

The only non-trivial part of the proof is to show exactnes@/atl/ N V). We have
to show that every form otV N V' can be written as the difference of a form on
U and one onV/. Choose a partition of unity subordinatedioV’, that is, two
smooth functiongy;, py : M — [0, 1] such that

PU|U\V =0 PU|V\U =1
PV|U\V =1 PV|V\U =0
pu + py = 1onall of M



Vv

Givenw € QF(U N V) the form py - w can be extended smoothly lyto all
of U. This way we obtain,’ € QF(U) with ij;w’ = py - w. Similarly, we get
w” € QF(V) with i},w” = py - w. Then we have o/ NV

w = (py + pv)w = ifw’ — i (—w")
showing thati;; — 3, is onto. O
This lemma has an important consequence.

Theorem 19(Mayer-Vietoris) Let M be an n-dimensional manifold. Then there
is an exact sequence of de Rham cohomologies:

i@y iy

0 > Hjp(M) — H{(U) & Hip (V) — HR(UNV) >

Ci) HcllR(M) -

—— HRHUNV) >

n— ey iy P )

<5—1> Hg (M) A Hip(U) @ Hip (V) =— HR(UNV) — 0
Here theconnecting homomorphism 6% : H%. (UNV) — HYTH (M) is defined by
the following procedure using the exact sequence in Lemma 18

(1) For aclass iri%; (U N V) choose a representativec Z*(U NV), i. e.,
the class is given bjw].

(2) Choose a preimage= (¢1,¢2) € Q*(U)®QF(V) of w, . e.,w = ifrp1 —
’i*vgog.
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(3) Apply d, dp = (dpy,dp2) € QLU @ QFL(V),
(4) Choose a preimaggee Q**+1(M) of dy, i. e.,dp; = jin anddps = jin.

(5) Thens turns out to be closed; € Z*+1(M), and we take its cohomology
class inH ! (M),

Of course, one has to check that this definition is meaningfigre precisely, one
has to show that all choices can be made (e. g. in step (4) oseghow thatiy

lies in the image of the mayj; @ ji,) and one must make sure that the resulting
cohomology clas$n] in the end is independent of the choices. This being done
one has to prove exactness of the Mayer-Vietoris sequendethis is entirely
algebraic and straightforward and uses only the fact th&tteem cohomology is
defined using the exterior differential on forms and Lemmasd18. This method

of proof is also known aabstract nonsense.

Example 20. We use the Mayer-Vietoris sequence to determine the Battheus
of the spheres.

(1) SinceS® = {~1,1} is 0-dimensional and has two connected components

we have
2 ifk=
bk(SO) — I 0
0 otherwise

(2) To treatS' we cover it by two subset& andV both being diffeomorphic
to an open intervaD! such that their intersection consists of two connected
components both being diffeomorphic to open intervals.

LV
St = | UxVaD' UNVaD'UD!
/
U
Thust?(SY) = O(U) = (V) = 1 andb’(U N V) = 2. Moreover,
VLU) =b (V) = bl(D ) = 0. From Remark 10 we concludé(UNV) =
bY(D'u DY) = b1(DY) + b (D) = 0. The only Betti number that needs to

11



be computed i%'(S'). This is done using the Mayer-Vietoris-sequence,

R Ro&R R®R
2l I I

0 — H3p(S'") — H{R(U) @ HYR (V) —= HRUNV) )

; HlR(8Y) —= HIR(U) @ Hip(V) —= Hp(UNV) —= 0
Il Il
0 0

Since the alternating some of the dimensions of the vectorespin an exact
sequence i8 we have

0 = bSH - @' U)+° (V) +%UNV)
b (Y + (BN (U) + b1 (V) = b (U NV)
= 1—-(1+1)+2-0(SH+(0+0)—0
1—b'(Sh).
Thereforeb!(S!) = 1 and we have

P(5") = 1 ifk=0,1
0 otherwise

(3) For the Betti numbers &™ with n > 2 we will get

bk(S”): 1 ifk=0,n
0 otherwise

We show this by induction on. CoverS™ by two n-disks

//’7\\\‘/

ST = UuUV
U ~ VaxD"~pt
UNV =~ S x(—ee)~ 8!

For k > 2 the following piece of the Mayer-Vietoris sequence
Hip'(U) ®© Hig (V) —= Hig'(UNV) — Hip(5") — Hp(U) © Hip (V)

[ ul I
0 HEN (5™ 0

12



yields an isomorphisnf/*~*(S"~1) = [*(S™) and therefore computes all
b’“(S") inductively fork > 2. SinceS™ is connected fon > 1 we have
b0(S™) = 1. Finally, to determiné!(S™) for n > 2 we look at the initial
part of the Mayer Vietoris sequence

R R®R R
2l I 2l

0 — HR(S"Y) —= HRU)® HR(V) —= HR(UNV) )

(—> Hig(8") —— Hip(U) ® Hyr(V)
0

From the alternating sum formula for the dimensions in exaquences we
concludeb! (S™) = 0.

These computations show that the Betti numbers of sphedifferent dimensions
are different. Hence we have

Corollary 21. The following statements are equivalent:
(1) s ~sm
(2 S"~S™
B n=m

This reasoning cannot work f@®"™ instead ofS™ becauseR™ ~ R™ ~ {pt} for
anyn andm. But

R ~R™ = S"1~R"\ {0} ~R™\ {0} ~5m1
= Sn_lﬁsm_l
= n—1=m-1

So Euclidean spaces are always homotopy equivalent butatteegliffeomorphic
only if they have equal dimension. Now we are ready to show ithageneral
diffeomorphic manifolds must have the same dimension.

Corollary 22. If M and N are diffeomorphic, then dim(M ) = dim(N).
Proof. Write dim(M) = m, dim(N) = n and supposé/ ~ N. We fix a point

g € N and choose a chart abayt. e., an open neighborhood g@tliffeomorphic to

13



D™. We may and will assume thatmaps to the origif) € D". Letp € M be the
preimage of; under the diffeomorphism from/ to N. We choose a neighborhood
of p in M diffeomorphic toD™. Without loss of generality we assume that this
neighborhood is so small that it maps into the chart algotfhis yields an open
subset/ C D™ containing the origin such thaf ~ D™.

M N

()

G
2]

&Q
L

DTTL D n

DenotingD™ := D" \ {0}, we have

D" =UuUD"
UND"=U\ {0}~ D"\ {0} ~ sm!

For k > 1 the Mayer-Vietoris sequence

HlR(D") —— Hip(U) @ HQR(D") — HRp(UN D) — Hgl—{l(Dn)
I [ Ul Ul I
0 0  HE(S" ) HE (5™ 0
yields H*(S™~1) = Hk(S"~1), hencem — 1 =n — 1. O

Remark 23. Corollary 22 can be shown more directly by analytic methdidbere
is a diffeomorphismf : M — N, then its differentialdf at a pointp € M maps

14



the tangent spacg, M isomorphically onto the tangent spatg,,) N. Therefore
the tangent spaces have equal dimension and so do the rdanifol

The argument given here does not use the definition of de Rio&wgnwology but
only certain properties such as the Mayer-Vietoris segeiehitherefore works also
with many other cohomology theories having the same prigsertn particular,
it can be used to prove that homeomorphic topological midsfbave the same
dimension. In this context the analytic methods would noavsglable.

Exercise 2. Let M be ann-dimensional manifoldp > 2, and leth/ := M \ {pt}.
Show that _
V(M) = b¥(M) fork # n,n — 1

provided all Betti numbers are finite. Moreover, show thHiesi

b" (M)
b (M) =

b (M) — 1 andb™ (M)

b"L(M) or
“YM) + 1 andb™(M) = b™(M

(M).
Hint: Apply the Mayer-Vietoris sequence fd = M U D™.

Exercise 3. Show by example that both cases occur.

2.3 Poincaie Duality & K tinneth Formula
The pairing
QF(M) x QY (M) — Q¥ (),
(w,m) = wAmn,
yields a bilinear map on cohomology,
HgR(M) X HéR(M) - Hﬁﬁl(M),
([w], n]) = [w A ).

First, one needs to check thatifandn are closed, so i A 1. This follows from

dwAn) = dw Anp+ (=1)Fw A dnp =0.

Then one checks that altering the closed forms by exact dites sghe wedge
procduct also by an exact form. This is a consequence of

(wWH+dp)AN(n+dyp) = wAn+wAdp+deAn+deAdyp
= wAn+ (=DFd(w A P) +dp An) +d(e Adi)
= wAn+d(-DFoAY +oAn+oAdy).

15



This bilinear map is super-commutative, i.@.A 7 = (—1)*n A w.
If M is compact and oriented, = dim M, then

Hg.LR(M) - Rv

(W) = | w,
M

is a well-defined linear map because by Stokes’ theorem we hav

Juean=f o = L

Theorem 24(Poincaré Duality) If M isa compact and oriented manifold, then the
bilinear map

HY (M) x HITH(M) — R
(), [7]) — /Mw A

is non-degenerate.
Corollary 25. For such M we have b* (M) = b"~*(M).

Example 26. b"(S™) = b°(S™) = 1. We see that the spheres have the smallest
possible Betti numbers that a compact and orientable nidrifn have.

Example 27.b"(R") = 0 # 1 = b°(R"), but this is not a contradiction sin@&"
is not compact.

Definiton 28. For a compact manifold M the number x(M) :=
S o(=1)*b*(M) is called theEuler characteristic of M.

Example 29.

2 if niseven
X(S") = {

0 if nisodd
Corollary 30. If M iscompact, orientable, and odd-dimensional, then x (M) = 0.

Proof. Sinceb?(M)—b"(M) = b'(M)—b""1(M) = --- = 0 by Poincaré duality
we have

X(M) = bo(M) — b (M) £ ...+ b" "1 (M) — b (M) = 0.

16



Next we will compute the Betti numbers of a product of two nigids A/ and
N. Letwp : M x N — M andny : M x N — N the canonical projections.
Similarly to the pairing defined above,
QF (M) x QHN) — QM x N),
(w,m) = Tyw A TN,
gives a bilinear magl’, (M) x Hig(N) — H5EH (M x N).
Theorem 31(Kiinneth Formula) Themap HY, (M) x Hiz (N) — HYTH(M x N)
yields an isomorphism
Hig(M x N) @ Hir (M) @ Hyp(N).
k+1=p

Hence
WM xN)= > bFM
k+l=p

Example 32. For the2-dimensional torusM = 77 = S' x §' = @

we have 0°(T?) = 1 becauseT? is connected. By Poincaré dual-
ity v>(T?) = (T?) = 1. The Kunneth formula gives!(T?) =
BO(SHBL(SY) + bH(SHO(SY) = 2. Frombi(S?) = 0 # 2 = b'(T?) we
conclude thats? and7? cannot be homotopy equivalent. In particular, they are
not diffeomorphic.

Exercise 4. Compute the following table (by induction @

bO(Fg) bl(Fg) bZ(Fg) X(Fg)
1 2g 1 2 —2g

where

17



g times y = genus)
In particular,Fy ~ Fj, <= Fy~F, <= g=h.
Corollary 33. For any two compact manifolds A/ and N we have
X(M x N) = x(M)x(N).
Proof. Using the Kiinneth formula we compute

) = (oEnrEen) (Y -nan)

k l

= Y (-DF Y (V)

kl

= S0 Y v )

p k+i=p

=
=
=
=

=bP(M X N)
= x(M x N).

Exercise 5. Computeb* (T™) for all k andn.

3 Simplicial Homology

Next we describe simplicial homology. Again, we will assdei vector spaces to
manifolds. This time they are based on decomposing the oidnifto simplices.

18



3.1 Definitions

Definition 34. (1) wo,...,v; € RY are said to bén general position if they are
not contained in & — 1)-dimensional affine subspaceRf".

[ ] [ )
in general not in general
position position
(2) If v, ..., v are in general position, then the convex hull

k
lvg -+ k| := Zajvj a; EO,Z%’ = 1}
J J

is called ak-simplex.

) If 0 # {wo,...,w;} C {vo,...,vx}, then|wg---w| is called aface of
‘fUO...vk’_

2-simplex

/ A
O-face 1-face

Definition 35. A setC of simplices inR” is called a(Euclidean) simplicial com-
plex, if

(1) for each simplex iriC all faces are also ifC,

(2) for anyo, T € K the intersectiorr N 7 is either empty or is a common face
of o andr,

allowed not allowed

19



(3) for anyz € RV there exits a neighborhodd of z in RY which meets only
finitely many simplices.

allowed
not allowed

Example 36(Tetrahedron irR3).

U3
vy
()
In this example vo
K= qlvol il [val, [vs], [vovs], [voval, [vovs], [v1val, [urvs], vaws),
O-dim.gmplices 1-dim.§implices

|’UOU1U2|, |’UOU1’L)3|, |’U0’U2’L)3|, |U1’U2U3l}.

2-dim. simplices

This defines a 2-dimensional simplicial complex.
Definition 37. If K is a simplicial complex, then we call
K] = U o
ce
its geometric realization.

We think of || as of the actual geometric object which we want to study while
K itself is the combinatorial description telling us how tomaéacture|C| out of
simplices.

20



Let vy, ...,vx be in general position. Two orderings 6y, ..., v} are called
equivalent, if they are transformed into each other by an even pernaumtatior
example,

(Ul, Vo, Ug) < (Uo, U1, ’Ug) ~ (’Ul, V2, ’U(])

An equivalence class of orderings §fy, ..., v} is called anorientation of
{vo, ..., v} (and also ofvy, . .., vgl).
U2
Vo U1

The simplex |vg - - - v| together with the orientation given by the ordering
(vo, . .., vx) will be denoted by(vy - - - vy). For the converse orientation we write

—(vo -+ vg) = (vivoU2 - - - V)

Let IC be a simplicial complex. Equip each simplexAinwith an orientation and
let

Cr(K,R) := Zajaj a; € R,0; € K simplex of dimensiork, m € N
j=1

Crx(K,R) is anR-vector-space with basis given by @Hdimensional simplices
in K. An element ofCy (K, R) is called ak-chain. We can think of ak-chain

as a decoration of the orientéddimensional simplices with certain real numbers
where only finitely many are allowed to be non-zero. For exdamp

a

For anyk define theéboundary map as the linear map

9 : Cyx(K,R) — Cp—1(K,R)
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given on the basis vectors by

U2

Vo +1 (%}

Lemma38. 909 : Ci(K,R) — Cr_2(K,R) iszero for all .

Proof.

88(@0---vk>

= 32(—1)J<vo~'@j---vk>ZZ(—l)Ja(’Uom@j---’Uw
j=0 Jj=0
k [t ' k '

= Z(_l)y (Z(1)’(@0---@---@j~'vk>+ Z (1)’1(1)0---@'-'@---%))
§j=0 i=0 i=j+1

= Z( 1) (vg -+ 0; - - D 'Uk>—Z(—1)Z+j<Uo Bie Dy vg)

=0

In contrast to the case of de Rhaahomology, where theé-Operator increases the
degree of forms, thé-operator defined above decreases the degree of chains. We
have

0~——C (K, R)<2—Cy (I, R) <2 Co (K, R) =2— . ..

We define the vector space lafundaries,

Bi(K,R) := im( : Cry1(K,R) — Ck(K,R)),
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and the vector space oycles,

Zp(K,R) :=ker(0 : Cx,(KC,R) — Ci_1(K,R)).
Again,d o 0 = 0 implies B, (K,R) C Z;(K,R) so that we can define
Definition 39. The vector space

Z(K,R)
Bi(K,R)

is called thek'™" simplicial homology of K. Its dimensions
be(K,R) := dim H,(K,R) € {0,1,2,...,00}

are again calle@etti numbers.

Hi(K,R) :==

Obviously, if K consists of finitely many simplices, thér. (1C, R) is finite dimen-
sional. Hence&Z, (K, R), By (K, R), andHy(/C, R) are then also finite dimensional.

Example 40(Homology for the tetrahedron) et K be the tetrahedron from Ex-
ample 36. The boundary map : C1(K,R) — Cy(K,R) is easily seen to be
given by the matrix
-1 -1 -1 0 0 O
1 0 0 -1 -1 0
o 1 0 1 o0 -1
0 O 1 0 1 1
In particular,rk(0;) = 3 and thereforelim By(KC,R) = 3 anddim Z; (K, R) =
dim C;(K,R) —rk(01) =6 —3 = 3. Thus
bo(KK,R) = dim Hy(K,R)
= dim Zp(K,R) — dim By(K, R)
= dim Cy(K,R) — dim By(K,R)
= 4-3 = 1
The boundary map, : C>(KC,R) — C4 (K, R) is given by the matrix

1 1 0 0
-1 0 1 O
0 -1 -1 0
1 0 0 1
0 1 0 -1
0O 0 1 1
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Thusrk(9dz2) = 3, hencedim B; (K, R) = 3. Therefore

bl(]C,R) = dimHl(lC,R)
= dim Z; (K, R) — dim B; (K, R)
= 3-3 = 0.

Moreover, dim Z>(C,R) = dimCy(K,R) — rk(d2) = 4 -3 = 1 and
dim By (K, R) = 0, thusby (IC,R) = 1. We have shown

1 ifk=0,2
0 otherwise

b(K,R) = {

We observe that the Betti numbésg K, R) coincide with the Betti numbers based
on de Rham cohomology for tiesphereS?. Moreover,S? and || are homeo-
morphic via central projection.

Exercise 6. Computeb;, and basis vectors fafd,, for

Exercise 7. Do the same for

3.2 De Rham’s theorem

Definition 41. Let M be a manifold, lefC be a simplicial complex. Then a home-
omorphismh : |KC| — M such that the restriction df to each simplex is smooth
is called asmoath triangulation of M.

One can show that any compact (smooth) manifold can be triategl by a finite
simplicial complex.
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Question 8. How doesH?* (M) relate toH,, (K, R), wherek is a simplicial com-
plex which triangulated/?

Leth : |[K| — M be a smooth triangulation dff. Then there is a bilinear map

Qk(M) X Ck(lcvR) - R,

(w,0) /U h*w.

It induces a bilinear map on cohomology and homology respagt Namely:

e If w = dn, then by Stokes’ theorem

(dn,a)H/h*dn:/dh*n:/ h*n.

Therefore,(dn, >, ajo;) — 0 provided) . a;o; € Z;(K,R). This shows
that the pairing is well-defined aH’%; (M) x Z;, (K, R).

e Similarly, if ¢ = 97 andw € Z*(M,R), then again by Stokes’ theorem,

(w,a):(w,af):/a h*w:/dh*w:/h*(\d%):o.
: . _—

Therefore, we obtain a well-defined map
HY%: (M) x Hy(K,R) — R,
(hloh = [ we.
Theorem 42(de Rham) This bilinear map is non-degenerate, i. e.,

Hir (M) — Hi,(K,R)",

bl (11 [ 100),
is an isomorphism. In particular, b*(M) = by, (K, R).

Remark 43. If M is compact, then I be a finite simplicial complex triangulat-
ing M. Thenb,(IC,R) < oo, henceh* (M) < oo for all k.

25



Remark 44. For the Euler characteristic of a triangulated compact folthiM
we compute

Y(M) = SR

k

= > (~)"b(K,R)
k

= Z(—l)k (dim ker 0y, — dim im0y 1)
k

= Z(—l)k dim ker 0, + Z:(—l)kJrl dim im0 41
k k

= Z(—l)k dim ker 0, + Z(—l)k dim imdy,
k k

= ) (-1)Fdim(Cy(K, R))

k

= ) (~1)"#(k-dimensional simplices
k

Example 45. If K is a simplicial complex triangulating?, then
#vertices— #lines+ #triangles= x(S?) = 2. (3)

In particular, if K is a finite 2-dimensional simplicial complex withC| ¢ R?
such that|KC| bounds a convex domain, then central projection yields aotmo
triangulation’ : |[KC| — S2. Hence (3) holds. Besides the tetrahedron this applies
e. g. to the octahedron and the icosahedron.

octahedron icosahedron

For other convex polyhedra like the cube the results seentonapply because
the 2-dimensional faces are squares not triangles so that the dods not define
a simplicial complex. But we can subdivide eazkdimensional face by adding a
diagonal. This yields a simplicial complex to which (3) dppl
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cube cube, subdivided

This adding of diagonals increases the numbédrdimensional an@-dimensional
faces by the same amount. Hence this new contribution dasdel(3). Therefore
(3) applies to the (original) cube as well. Similar reasgrshows that it applies to
all convex polyhedra ifR?, e. g. to the dodecahedron. The formula

#vertices— #lines+ #triangles= 2

for convex polyhedra is much older than homology theorys known astuler’s
formula.

Remark 46. In the definition ofHy(C, R), the coefficient ringR can be replaced
by any commutative ring with unit. Popular choices @eC, Z, andZ/2. For the
comparison with de Rham cohomology we have to use real cesfficbecause
differential forms naturally form a real vector space. lbghi be mentioned that
simplicial homology with integral coefficients containgrsetimes more informa-
tion than the one with real coefficients; thg, (1, R) can always be computed out
of the Hy(/C, Z) but not conversely.

4 Further reading

There are many good introductions to algebraic topologhdffocus should be on
manifolds - as in these notes - then | can recommend [1, 2, 3Hady all introduce
various (co-) homology theories on manifolds and explais &f applications. A
rather encyclopedic account of algebraic topology can badadn [4].
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5 Solutions to the exercises

Exercise 1. Letc : [0,27] — R2, ¢(t) = (cos(t),sin(t)), be the loop winding
around the origin once. We compute

cos(t)

/C@ - /0% <_sin(t)s;r—li-(?os(t)2dcos(t) + sin(t)? + Cos(t)zdsm(t)>

= /ZW (sim(t)2 + cos(t)z) dt = 2.
0

If & = df had a solutionf, then we would get

/ 5= / df = f(e(2m)) — F(c(0)) = £(1,0) — £(1,0) = 0,
a contradiction.

Exercise 2. Removing a point from a manifold of dimension at ledsloes not
change the number of connected components, hence

We will apply the Mayer-Vietoris sequence for the open cafek! by A and an
n-dimensional ballD™ containing the point that has been removed. We observe
that A/ N D™ = D" ~ "', Fork = 1 < n — 1 the Mayer-Vietoris sequence
yields

R R
Ul Ul

0 — Hig(M) — H3y (M) ® H3y(D") — Hx(M N D") )

; Hlp (M) —= H}y (M) ® Hip(D") —= Hlp(M 0 D")
1 1
0 0.

Therefored = b°(M) — (b°(M) +1) 41 —b (M) + (b* (M) +0), henceb! (M) =
bl (M).
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For2 < k < n — 1 the Mayer-Vietoris sequence yields

: D
Hjig (M) — H}p (M) © Hig (D") — HE (M 0 D")
1 Il
0 0

thusb*(M) = b*(M). To computeb*(M) for k = n — 1 andk = n we look at
the final part of the Mayer-Vietoris sequence,
D

o mpan — mpons0 — & >

C_> Hi (M) —— Hio (M) ®0 — 0

This impliesh” ! (M) — b~ (M) + 1 — b™(M) + b" (M)
Hi (M) — HYZ' (M) is injective, henceé™ (M)
shows thatil %, (M) — H& (M) is onto, thus” (M)

= 0. It also implies that
b*—1(M). Moreover, it

<
> b™(M). Therefore,

—b" N (M) 4+ "N (M) + 0 (M) — b (M) = 1.

>0 >0

This proves the claim.

Exercise 3.For M = R™ we haveb” (M) = b™(M) = 0 andM ~ S"~', hence
b*—1(M) = 1 andb™(M) = 0.

For M = S™ we haveb” (M) = 0 andb”(M) = 1 while M ~ R" (via
stereographic projection), hente™ (M) = b™(M) = 0.

Exercise 4.All surfacesF, are connected, hendg(F,) = 1. By Poincaré duality
b*(F,) = 1. It remains to computél( v)- We know the result already fgr = 0

andg = 1.

To procede inductively leg > 2. We coverF,, by two open subsetsS andV’ such
thatU ~ F, 1,V ~T? andUNV =~ S* x D1 ~ S, Heuristically,U covers the
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first g — 1 “holes” while V' covers the last “hole”. The Mayer-Vietoris sequence is
now given by

0 R R®R

Thus . . . .

bl(Fg) = bl(Fg—l) - bz(Fg—l) + bl(T2) - bz(T2)-
From Exercise 2 and by induction we know thalt(F, ;) — b?(F,_;) =
b (Fy_1) —b*(Fy—1) + 1 = 2(g — 1). Similarly, b*(T?) — b*(T?) = 2. The result
follows.

Exercise 5.We claim thath*(T™) is given by the binomial coefficier(Z). For
n = 1 we havel'* = S! and the result is known. We procede by inductionmon
using the Kiinneth formula.
bk(Tn) — bk(Tn—l % Sl)
= > v -v(sh

i+j=k
— bk(Tn—l) 14 bk—l(Tn—l) .1

()
()

Exercise 6.For definiteness we give the vertices names,

U1 U3

Vo () (W
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ThenCy has the basiéuv), .. ., (v4) andCy has the basigvyv; ), (viva), (vavy),
(vavs), (v3v4), (V4v2). With respect to this basis the boundary néapC; — Cj
is given by the matrix

R
[en}
[en}
[an)}
o = O O

o o O =
(@)
[e)
—
|
—

This matrix has rank4. Its kernel has basis vectord,1,1,0,0,0)" and
(0,0,0,1,1,1)". HenceH,; = Z; has dimensiorb; = 2 and the basis vectors
(vov1) + (1)11)2> + <vgv0> and(vavs) + (1)31)4> + <v4v2>.

Moreover,by = dim Hy = dim Zy — dim By = dimCy — dim By =5 —4 = 1.
Since the vectof1,1,1,1,1)" does not lie in the image of the matrix, the element
(vo) + (v1) + (v2) + (v3) + (v4) € Cp represents a basis vectorify.

Exercise 7. The discussion off; is the same as in Exercise 6, i. &,= 1 and
(vo) + (v1) + (v2) + (v3) + (v4) € Cp represents a basis vectorify.

But now we also have to consider the boundary ap’s — C;. There is only
one2-simplex, namelyvyvsvys). HenceCy is 1-dimensional with basigvavsvy).

The boundary map : Co — (' satisfies

O(vguzvy) = (vsvg) — (vovyg) + (vou3)
= (vgvg) + (v4v2) + (va03).

In particular,b, = dim Z, = 0 andb; = dimZ; —dimB; =2 -1 = 1. The
element(vgvy) + (v1v2) + (veuvg) € C; represents a basis vector Hf .
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